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Foreword

Alas, our fragility is the cause, not we!
For, such as we are made of, such we be.

Viola, in Shakespeare, Twelfth Night

The science of “precision medicine” is in many ways the delicate quest for gaining
insights into the fashion Nature deals the cards of human variability across the
>200+ different classes of cancer.

Most applications of genomic profiling can be roughly categorized into one of
two paradigms on the basis of the anticipated or desired outcome for analysis:

• Research to Discover Generalized Knowledge
• Search to Recover Individualized Knowledge

In the past, our hope has largely been on the former—that by simply acquiring the
knowledge of genetic, genomic, and immunologic changes across a massive
enough number of cancers, it would allow us to anticipate the strategies, capri-
ciousness, and fallibilities that are deployed against us in successful cancer treat-
ment for an individual patient.

This volume on “precision medicine” captured by Von Hoff and Han takes the
important step forward toward modifying the intellectual framework on which to
hang “multi-omic data”. As described across the chapters (and summarized in the
chapter by Schork et al.), more precise medical management of an individual with
cancer has to extend beyond discovery-based data analysis. Such data is likely to be
cross-sectional and leverages scientific approaches that try and uncover patterns
across populations to make new generalized discoveries, and although this
approach has an incredible “greater good” potential, nonetheless it has only limited
direct benefit for the individuals who participate. Most often the patient is left with
the hope that with time more people will participate, more knowledge will be
generated, and eventually, there will be additional indirect benefits for the indi-
viduals who participate today.

We lack an embracing of conceptual frameworks which process the rich indi-
vidualized information more comprehensively, leverage previously available
knowledge, and intelligently recovering clinical relevant meaning. The framework
for “precision medicine” that is outlined in this volume is a collaborative strategy to
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provide such a “lingua franca” that can help improve our hand in the face of the
often, hopeless odds we are dealt by cancer.

Precision medicine has changed options and outcomes for cancer patients—for a
few, a transformative, durable response—but by no means a guarantee and we must
strive to do better. The hope for the future of precision medicine is in our continued
embracing of conceptual frameworks, which process both the rich individualized
information more comprehensively, leverage previously available knowledge more
completely, and intelligently recover clinical relevant meaning in near real time. We
should be prepared for surprises!

Phoenix, Arizona, USA Jeffrey M. Trent, Ph.D., F.A.C.M.G.
Founding Scientific Director of the
National Human Genome Research

Institute, NIH

President and Research Director
Translational Genomics Research

Institute (TGen)

Professor, City of Hope
Comprehensive Cancer Center
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Preface

The words of personalized medicine and indeed even the seemly more precise
precision medicine are at the lips of many these days. They have become almost
“catch phrases” used even in advertising campaigns to distinguish healthcare sys-
tems. Those of us engaged in the daily practice of oncology have felt there is no
doubt that for an increasing number of patients with cancer, precision medicine has
been a godsend for improving their individual clinical situation.

We are pleased to present for the readers what we feel is a valuable text on three
aspects of precision medicine. The first aspect is how precision medicine is helping
patients now. As you will see, these chapters provide an incredible update on the
current status of precision medicine for day-to-day care. This is a must for the
practicing clinicians.

The second aspect of precision medicine, which for some is a black hole of
knowledge, is the technologies behind precision medicine. This is beautifully
crafted by the chapters on basic technologies including the latest in precision
medicine in immune-oncology.

The final aspect of this text is the future of precision medicine. This is provided
to keep the readers well versed with knowledge they will be able to apply in the
days ahead in their practice. This future will undoubtedly hold incredible new
technologies and an increasing amount of artificial intelligence.

The assembly of this book has required the intelligence, skills, and devotion of
many. We acknowledge our patients who have, with their sometimes insur-
mountable clinical situations, driven us to try to do better for them. We acknowl-
edge the incredible contributors to this volume who have made these chapters
exceptional readings. Finally, we acknowledge the tremendous effort of the editorial
staff who have made this text possible.

Phoenix, Arizona, USA Daniel D. Von Hoff, MD, FACP
Haiyong Han, Ph.D.
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1.1 Introduction

Even though the incidence of lung cancer is decreasing, unfortunately over 160,000
people still die from the disease every year and it remains the leading cause of
cancer death in the USA. Lung cancer has been traditionally classified as small-cell
lung cancer and non-small-cell lung cancer. Non-small-cell lung cancer can further
be classified into adenocarcinoma, squamous cell carcinoma, and large-cell carci-
noma. Histologically, small-cell lung cancer and non-small-cell lung cancer have
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different natural histories and therapeutic approaches. Prior to 2004, there was no
need of distinguishing various subtypes of non-small-cell lung cancer as the ther-
apeutic management was similar within all subtypes.

However, management and treatment of lung cancer has transformed in the past
decade. This changed particularly in 2004 when a small percentage of lung ade-
nocarcinomas were identified with mutations in the EGFR gene that rendered those
tumors sensitive to the EGFR tyrosine kinase inhibitors. Since then, there has been
a surge of other actionable mutations in lung cancer. Up to 69% of the patients with
advanced lung cancer have actionable mutations. The majority of them are
KRAS (25%), EGFR sensitizing (17%), ALK (7%), MET (3%), HER-2 (2%),
ROS1 (2%), BRAF (2%), RET (2%), NTRK1 (1%), PIK3CA (1%), and MEK1
(1%) [1]. In addition, 31% patients are found to have unknown oncogenic driver
mutations for which we currently do not have any targets [1]. Because of these
advances, the current guidelines such as American Society of Clinical Oncology
(ASCO) or National Comprehensive Cancer Network (NCCN) guidelines recom-
mend molecular profiling or next-generation sequencing to determine the best
treatment options for the individual patients or small subsets of newly diagnosed
lung cancer patients. There is also growing understanding that there are increased
genomic alterations through treatment lines, and there is more emphasis on better
understanding of mechanisms of resistance and clonal evolvement of tumor. Thus,
precision or personalized medicine has become an emerging approach for treatment
and research of lung cancer taking into account personalized genetic landscape,
tumor microenvironment, and available therapeutics.

In this current chapter, we will review the available options for next-generation
sequencing and the importance of value-based genomics. We will then attempt to
define the molecular abnormalities in lung cancer with standards of care and also
potential diagnostic platforms such as proteomics and genomics. Then, we will
individually discuss the current actionable mutations, genomic alterations with
emphasis on the underlying mechanism of abnormality with the potential to therapy
and available therapeutic options with evidence of clinical trials.

1.2 Value-Based Genomic Profiling

In the past few years, there has been advancement in next-generation sequencing
techniques which have led to the development of biomarker-driven cancer thera-
pies. The NGS techniques have now become more commercialized and affordable
with various different platforms. These sequencing data has not only impacted
clinical decision making but also allocation of resources in research and develop-
ment of therapeutics and lung cancer. However, the current challenge is the stan-
dardization of these recommended NGS across different academic and community
practices in a more value-based approach to obtain a greater clinical benefit with
minimizing cost and risk of genomic profiling in cancer care [2].
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The human genome sequencing project was initially completed in 2003 and led
to further investigations and understanding of the genomics of various mutations
and alterations in development of cancer [1]. First-generation Sanger sequencing
technique was used for sequencing of human genome which required a decade of
multi-central collaboration, automated analysis, and roughly $3 billion [3]. How-
ever, there is an exponential decline in the sequencing cost since then. James
Watson’s genome was completed for less than $1 million. By 2009, the cost of
genome sequencing dropped to $100,000 [4–6]. Since then, there has been
development of several next-generation sequencers by different companies such as
Roche, Life Technologies (SOLiD), Illumina, Pacific Biosciences, and Ion Torrent,
all of which provide platform for faster and cheaper next-generation sequencing of
cancer genome [4, 7–9]. The next-generation sequencing can be further subdivided
into more affordable, interpretable, and commonly used targeted sequencing of a
panel of recognized or putative cancer-associated genes versus whole-exome or
whole-genome sequencing which provide comprehensive profiling of all protein-
encoding genes of the genome giving more information and long-term
cost-effectiveness [10–12].

In this rapidly progressing era, it is important to practice value-based medicine
focusing not only on cancer drugs but also on value of genomic profiling in cancer
clinic. Most of the next-generation sequencing platforms aim at detecting somatic
mutations using formalin-fixed paraffin-embedded tissue tumor. Other rarely use
samples include malignant fluid, blood samples, and salivary swabs. Common NGS
platforms are FoundationOne that covers 315 genes costing $5800 with 14 day
turnaround time; Caris Molecular Intelligence covering more than 600 genes with a
cost of $6500 and similar 14 day turnaround; OncoDeep, 75 gene panel, costing
$3500 with 7 day turnaround time; Paradigm cancer diagnostic with 186 genes and
the cost of $4800 and 5-day return as well as Oncomine Dx Target Test (NSCLC
only) with 23 genes and quick 4-day return [13–17].

There are multiple aspects of cost including sample collection, experimental
design, sample sequencing, data management, and downstream analysis [18]. Even
though the cost for the DNA sequencing may be reducing rapidly due to the
advancements in NGS techniques, data management and downstream analysis costs
still remain a challenge [19]. To date, no randomized controlled trials have
investigated the cost-effectiveness of NGS and there is limited health economic
evidence for genomic sequencing and a comprehensive calculation of genomic
sequencing containing multiple aspects of the cost is needed.

Despite the high cost, it would be beneficial to use precision oncology if it shows
clinical effectiveness. A large retrospective study of 143 single-agent phase II trials
from Year 2000–2009 in over 7000 advanced non-small-cell lung cancer patients
showed superior median overall response rate, progression-free survival, and
overall survival in trials enriched for the presence of molecular targets compared to
studies with non-selective patients [20]. Similarly another meta-analysis of 112
registration trials from 1998 to 2013 comparing efficacy outcomes between thera-
pies employing a personalized treatment approach versus general non-selective
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treatment showed higher response rate, longer progression-free survival, and longer
overall survival in patients treated based on precision medicine [21].

At the same time, it is important to keep in mind the treatment-related toxicity
and financial burden for this personalized treatment approach. The same
meta-analyses did not show any increased treatment-related mortality compared to
the non-personalized treatment strategy [22]. Other meta-analyses have shown that
cytotoxic agents have higher treatment-related or adverse effects compared to tar-
geted therapies. In addition, a recent meta-analysis of 41 randomized clinical trials
evaluating 28 targeted agents for solid tumors approved by the Food and Drug
Administration (FDA) evaluating the rate of treatment discontinuation due to tox-
icity and grade 3–4 adverse effects showed that targeted therapies with companion
diagnostic tests were associated with improved safety and tolerability [23].

The financial burden associated with the cancer care has increased rapidly with
the cost of out-of-pocket expenses, copayments, and insurance premiums. Since
most of these NGS diagnostic tests are associated with targeted therapies which are
considered “experimental or investigational,” insurance companies often do not
reimburse for these agents which are considered “off label.” Therefore, NGS has not
yet become standard of care across most practices in USA.

However, undoubtedly precision medicine and value-based care may be the
future of cancer medicine. There needs to be happy medium with guidelines or
standardization in NGS so that insurance payers allow for coverage for appropriate
and most cost-effective NGS testing which is in best interest of the patient.

1.3 Defining the Molecular Abnormalities in Lung Cancer

1.3.1 Molecular Abnormalities in Lung Cancer

In 2017, FDA approved immune checkpoint inhibitor pembrolizumab for treatment
of cancer patients with high microsatellite instability or mismatch repair deficient
markers, regardless of the tumor locations or tissue types. This is a milestone in the
development of molecular profiling of cancer and its implications of cancer treat-
ments. The future direction of precision medication in oncology will rely more on
the molecular features of a tumor than the tissue types. Lung cancer has been
histologically classified as small-cell lung cancer (SCLC) and non-small-cell lung
cancer (NSCLC) which includes lung adenocarcinoma, large-cell carcinoma, and
squamous cell carcinoma (SCC). With the advancement of technology especially
next-generation sequencing, genetic and molecular profiling has identified different
subtypes of lung cancer with specific molecular characteristics, which are associ-
ated with the clinical/pathological features, prognosis, and treatment responses.
Molecular targeted therapy and immunotherapy based on specific somatic genetic
mutations/alterations and molecular markers of lung cancer have been changing the
paradigm of lung cancer management drastically.
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The Cancer Genome Atlas Research Network analyzed 230 lung adenocarci-
noma using messenger RNA, micro-RNA, and DNA sequencing integrated with
copy number, methylation, and proteomic analyses [24]. The whole-exome
sequencing had revealed high rates of somatic mutation (mean 8.9 mutations per
mega base), and 18 genes were statistically significantly mutated. TP53 was the
commonly mutated (46%), followed by mutations in KRAS (33%), EGFR (14%),
BRAF (10%), as were PIK3CA (7%), MET (7%) and the small GTPase gene, RIT1
(2%). Mutations in tumor suppressor genes including STK11 (17%), KEAP1
(17%), NF1 (11%), RB1 (4%), and CDKN2A (4%) were observed. Mutations in
chromatin modifying genes SETD2 (9%), ARID1A (7%), and SMARCA4 (6%)
and the RNA splicing genes RBM10 (8%) and U2AF1 (3%) were also common.
EGFR mutations were more frequent in female patients, whereas mutations in
RBM10 were more common in males. Aberrations in NF1, MET, ERBB2, and
RIT1 occurred in 13% of cases and were enriched in samples otherwise lacking an
activated oncogene, suggesting a driver role for these events in certain tumors. By
sequencing the DNA and mRNA sequence from the same sample, splicing alter-
ations driven by somatic genomic changes such as exon 14 skipping in MET
mRNA was found in 4% of cases.

When measured at the protein level, recurrent aberrations in multiple key
pathways were characterized. Such as RTK/RAS/RAF pathway activation (76% of
cases), PI3K-mTOR pathway activation (25%), p53 pathway alteration (63%), cell
cycle regulation alteration (64%), and mutation of various chromatin and splicing
factors (49%). There are mechanisms other than genetic mutations suggested for
activations of signaling pathways. For example, the KRAS-mutated lung adeno-
carcinoma had higher levels of phosphorylated MAPK than KRAS wild-type
tumors on average; however, a lot of KRAS wild-type tumors also have significant
MAPK activation. MAPK and PI(3)K pathway activation can be explained by
known mutations in only a fraction of cases. The somatic alterations involve key
pathway components for RTK signaling, mTOR signaling, oxidative stress
response, proliferation and cell cycle progression, nucleosome remodeling, histone
methylation, and RNA splicing/processing [24].

Genetic analysis of lung adenocarcinoma is the standard of care for treatment
selection nowadays. The Lung Cancer Mutation Consortium (LCMC) did a
multi-institutional analysis of 10 potential oncogenic driver mutations in at least one
of the 8 genes (EGFR, KRAS, ERBB2, AKT1, BRAF, MEK1, NRAS, and
PIK3CA) in 1007 specimens and 733 specimens had all 10 markers tested (in-
cluding ALK and MET) [25]. KRAS mutations are the most commonly found with
a frequency of around 25% followed by EGFR mutations in 22% of the samples. In
this cohort, EGFR mutations were highly associated with female sex, Asian race,
and never-smoking status; and less strongly associated with stage IV disease, the
presence of bone metastases, and absence of adrenal metastases. ALK rearrange-
ments were strongly associated with never-smoking status and more weakly
associated with the presence of liver metastases. ERBB2 mutations were strongly
associated with Asian race and never-smoking status. Two mutations were seen in
2.7% of samples (27/1007), all but one of which involved one or more of PIK3CA,
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ALK, or MET, including 14 with two small mutations and 13 with either a small
mutation and ALK rearrangement (4); a small mutation and MET amplification (7);
or concurrent ALK rearrangement and MET amplification (2). Of 14 cases with two
small mutations, 13 (92%) had a PIK3CA mutation in addition to another mutation,
including 9 with EGFR, 2 with BRAF, 1 with KRAS, and 1 with MEK1 mutation.
One case had EGFR ex19del and AKT1 c.49G>A (p.E17K) mutations.

Unlike non-small-cell lung cancer (NSCLC), targeted therapy and molecular
profiling are less utilized in small-cell lung cancer (SCLC) in clinical practice [26].
The most common genetic alterations in SCLC are inactivation of the tumor sup-
pressor genes TP53 and RB1. In a study which sequenced 108 SCLC tumors
without chromothripsis, TP53 and RB1 had bi-allelic losses in 100% and 93% of
the cases, which included mutations, translocations, homozygous deletions, hem-
izygous losses, copy-neutral losses of heterozygosity (LOH), and LOH at higher
ploidy [27]. The other common genetic alterations found in SCLC include
copy-number gains of genes encoding MYC family members, mutations in
enzymes involved in chromatin remodeling, receptor tyrosine kinases, and Notch
pathway [27]. Around 98% of SCLC cases are associated with smoking and only
2% occur in non-smokers [28]. SCLCs have extremely high mutation rates (around
8.62 non-synonymous mutations per million base pairs), and C:G > A:T
transversions were found in 28% of all mutations on average, a pattern indicative of
heavy smoking [27]. The high mutational burden of SCLC might provide oppor-
tunities for immunotherapy.

According to the NCCN guidelines (Version 4.2018), molecular testing of
EGFR mutation, ALK, ROS1, BRAF, and programmed death ligand 1 (PD-L1) is
recommended in metastatic lung adenocarcinoma, large-cell lung cancer, and
NSCLC not otherwise specified (NOS). For SCC, consider molecular testing of
EGFR and ALK in never smokers or small biopsy or mixed histology, and consider
ROS1, BRAF testing as part of broad molecular profiling. PD-L1 testing was also
suggested for SCC. PD-L1 immunohistochemistry (IHC) testing is approved for
formalin-fixed, paraffin-embedded (FFPE) surgical pathology specimens and helps
select patients most likely to respond to immune checkpoint inhibitors. PD-L1
expression level � 50% is indicated for first-line pembrolizumab therapy of
NSCLC.

Various methods have been utilized for molecular profiling of lung cancer.
Mutations can be detected by next general sequencing as well as various methods
including direct Sanger sequencing and pyrosequencing, mutation-specific PCR,
multiplex PCR assay followed by single base extension sequencing (SNaPshot, Life
Technologies, Grand Island, NY) or matrix-assisted laser desorption/ionization
time-of-flight mass spectrometry (MassARRAY, Sequenom, San Diego, CA),
high-performance liquid chromatography (HPLC), etc. [29]. Multiple commercial
next-generation sequencing platforms are available now as summarized in a recent
review [2]. Liquid biopsy which refers to testing mutations on circulating tumor
DNA (ctDNA) in blood samples is a promising method to detect genomic alter-
ations and can potentially be used a surrogate method for tissue biopsy testing and
even complementary approach [30]. Due to the tumor heterogeneity, a single tissue
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biopsy may not reflect complete genomic mutations and there are discordance
between tissue and ctDNA sequencing results, so both approaches are recom-
mended to enhance mutation detection [31]. Fluorescence in situ hybridization
(FISH) analysis is utilized for detecting copy number, amplification, and structural
alterations such as gene arrangements. FISH is commonly used for ALK/ROS1
rearrangement and MET amplification.

1.4 Epidermal Growth Factor Receptor (EGFR)

1.4.1 EGFR Mutation in Lung Cancer

The epidermal growth factor receptor (EGFR) is a transmembrane signaling
receptor that was discovered in the early 2000s [32]. Under normal conditions, once
stimulated by epidermal growth factor, EGFR monomers on the cell surface
dimerize to activate the intracellular tyrosine kinase. This activates the RAS, RAF,
MEK, ERK pathway and the PI3K, AKT, mTOR pathway to increase expression of
genes promoting cell growth and proliferation. In non-small-cell lung cancer
(NSCLC), the EGFR gene can become mutated leading to constitutive activation of
the EGFR tyrosine kinase. This permits increased tumor growth and proliferation
uninhibited by extracellular or intracellular signals.

Approximately 15–20% of patients with NSCLC adenocarcinoma in the USA
have mutations in the EGFR tyrosine kinase domain in their tumors [33].
The EGFR mutation frequency is highest in Asian populations. In a meta-analysis
of 151 worldwide studies, the Asia-Pacific NSCLC subgroup had the highest EGFR
mutation frequency at 47% but there was a wide range between studies from 20 to
76% [34]. The European subgroup in this meta-analysis had an overall EGFR
mutation frequency of 15% [34]. EGFR mutations are also more prevalent in
females and never smokers. However, EGFR mutations are not restricted to patients
with Asian ethnicity, female gender, or never smoker status. The PIONEER study
performed in Asia revealed that more than 50% of patients with EGFR mutations
were not female non-smokers [35]. This highlights the need to test all patients with
NSCLC adenocarcinoma for EGFR mutations regardless of clinical characteristics.

The two most common activating mutations in the tyrosine kinase domain of the
EGFR are deletion of exon 19 (EGFR del19) and a point mutation in exon 21
(EGFR L858R) which substitutes an arginine for a leucine at position 858. Other
possible mutations include T790M (substitution of a methionine for a threonine at
position 790 in exon 20), S768I, L861Q, G719X, and many others. In a
meta-analysis of studies from China, L858R accounted for 38.3% of all EGFR
mutations and del19 accounted for 37% [36]. T790M occurred at a rate of 1.5% in
treatment-naïve patients [36]. Of note, the T790M mutation rate increases with
exposure to EGFR tyrosine kinase inhibitors, which will be discussed later. The rate
of EGFR mutations sensitive to tyrosine kinase inhibitors was 88.5% [36].
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The presence of an EGFR mutation is a key piece of clinical information because
it is associated with a high response rate to therapy with EGFR tyrosine kinase
inhibitors (TKIs). First-generation EGFR TKIs include erlotinib and gefitinib; these
drugs compete with ATP to reversibly bind the intracellular catalytic domain of
EGFR tyrosine kinase, thus blocking downstream signaling and reducing cell
growth [37]. The second-generation EGFR TKIs include afatinib and dacomitinib;
these drugs irreversibly inhibit the catalytic domain of the EGFR tyrosine kinase
[37]. The third-generation EGFR TKI is osimertinib. Osimertinib is an irreversible
EGFR TKI that inhibits both EGFR TKI sensitizing mutations and EGFR T790M
resistance mutations. It is currently recommended for frontline treatment of
advanced EGFR-mutant NSCLC based on the FLAURA trial [38].

In the FLAURA trial, 556 patients with previously untreated EGFR mutated
advanced NSCLC were randomly assigned to either osimertinib 80 mg, PO, QD, or
a standard EGFR TKI such as gefitinib 250 mg, PO, QD, or erlotinib 150 mg, PO,
QD. The median PFS was longer with osimertinib at 18.9 months versus
10.2 months for the standard EGFR TKIs (HR 0.46; CI 0.37–0.57). The ORR was
80% with osimertinib and 76% with standard EGFR TKIs. The median duration of
response was 17.2 months with osimertinib versus 8.5 months with standard EGFR
TKIs. Data on OS is not yet mature. Grade 3 or higher adverse events were less
common with osimertinib (34% vs. 45%). Osimertinib is now recommended in the
first-line setting for EGFR mutated advanced NSCLC due to its improved PFS and
lower rate of serious adverse events [38].

Prior to this trial, the standard of care was erlotinib, gefitinib, or afatinib in the
frontline setting. After progression, the presence or absence of the resistance
mechanism T790M was evaluated by liquid biopsy or tissue biopsy. This resistance
mechanism develops in approximately 50% of cases [39]. If T790M is present, the
patient is eligible for second-line therapy with osimertinib. This is based on the
AURA3 trial; 419 patients with T790M-positive advanced NSCLC who had dis-
ease progression after standard EGFR TKI therapy received either osimertinib
80 mg PO QD or pemetrexed plus either carboplatin or cisplatin every 3 weeks for
up to 6 cycles. Pemetrexed maintenance was permitted. The median PFS was
significantly longer with osimertinib at 10.1 months versus 4.4 months (HR 0.30;
CI 0.23–0.41). The ORR was 71% with osimertinib versus 31% with combination
chemotherapy. Among patients with CNS disease, the median PFS was 8.5 months
with osimertinib versus 4.2 months with chemotherapy. Furthermore, grade 3 or
higher adverse events were lower with osimertinib (23% vs. 47%) [40]. As many
patients have been on standard EGFR TKI therapy, this strategy for using
second-line osimertinib remains relevant.

Erlotinib, gefitinib, and afatinib have all been evaluated by clinical trials com-
paring these agents to platinum-based chemotherapy doublets in patients with
advanced NSCLC and EGFR activating mutations. One meta-analysis looked at 13
phase III trials including 2620 patients and concluded that the PFS was significantly
prolonged with EGFR TKIs (HR 0.43; CI 0.38–0.49) compared to chemotherapy.
Overall survival was not prolonged (HR 1.01; CI 0.87–1.18), but it was hypothe-
sized that this is due to significant crossover between the treatment arms [41].
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Three large trials assessed erlotinib versus chemotherapy. The OPTIMAL trial
assigned 154 patients to erlotinib or gemcitabine plus carboplatin. Erlotinib
increased PFS (13.1 vs. 4.6 months, HR 0.16; CI 0.10–0.26) and increased the
ORR (83% vs. 36%) [42]. OS was not significantly different [43]. The EURTAC
trial assigned 174 patients to erlotinib or a platinum-based chemotherapy doublet
and found erlotinib increased PFS (9.7 vs. 5.2 months, HR 0.37; CI 0.25–0.54) but
did not increase OS [44]. The ENSURE trial assigned 275 patients to erlotinib or
gemcitabine plus cisplatin and found erlotinib increased PFS (11 vs. 5.5 months,
HR 0.34; CI 0.22–0.51) but did not increase OS [45]. The most common side
effects of erlotinib include rash, diarrhea, and less commonly interstitial pneu-
monitis and hepatic toxicity. The most common grade 3 or higher adverse event
was rash (6.4–13%) in the erlotinib group, which had a favorable toxicity profile
compared to chemotherapy [44, 45].

The IPASS trial assessed gefitinib versus chemotherapy. In this trial, 1217 Asian
patients who were never or former light smokers with advanced NSCLC were
assigned to gefitinib or carboplatin plus paclitaxel. Gefitinib improved PFS
(12 month progression-free rate 25% vs. 7%, HR 0.74) but did not change overall
survival in the cohort [46, 47]. Subgroup analysis revealed that patients with an
EGFR mutation had a significantly improved PFS (9.5 vs. 6.3 months, HR 0.48).
Patients without an EGFR mutation had a significantly shorter PFS (1.5 vs.
6.5 months, HR 2.85). This highlighted the importance of testing for the presence
of EGFR mutation rather than relying on clinical characteristics to determine
therapy [46, 47]. Further trials, such as the North East Japan Study Group 002 trial
conducted in patients with known EGFR mutations, reported similar results to the
IPASS trial [48]. The most common adverse events with gefitinib were rash (71%)
and elevated liver function tests (55.3%). The rate of grade 3 or higher adverse
events was approximately 41% in the gefitinib group and 71% in the chemotherapy
group [48].

The LUX-Lung 3 and the LUX-Lung 6 trial assessed afatinib versus
chemotherapy. The LUX-Lung 3 trial assigned 345 patients with EGFR mutated
NSCLC to afatinib 40 mg PO QD or cisplatin plus pemetrexed for up to 6 cycles.
Afatinib increased PFS compared with chemotherapy (11.1 months vs. 6.9 months,
HR 0.58; CI 0.43–0.78). The ORR was increased with afatinib (56% vs. 23%), and
time to symptom progression and quality of life were improved with afatinib [49,
50]. The most common side effects included diarrhea (95%), rash (89%), stomatitis
(72%), nail changes (57%), and dry skin (29%) [49]. The LUX-Lung 6 trial
assigned 364 Asian patients to afatinib or cisplatin plus gemcitabine. Afatinib
increased PFS compared with chemotherapy (11 vs. 5.6 months) and afatinib
increased the ORR (67% vs. 23%) [51]. When these two trials were combined, the
median OS was not significantly different between the two therapy groups. How-
ever, there was a significant increase in OS in the subgroup of patients with the
exon 19 deletion [52].

Of note, patients with NSCLC with uncommon EGFR mutations such as S768I,
L861Q, or G719X can be treated with afatinib in the first-line setting based on
analysis of the LUX-Lung trials, but afatinib is less active in other uncommon
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mutation types [53]. Dacomitinib is another second-generation EGFR TKI that was
compared to gefitinib as first-line treatment for patients with EGFR mutation-
positive NSCLC (ARCHER 1050). Dacomitinib did have a longer PFS, but it had
greater toxicity and is not currently approved in the USA [54].

Erlotinib, gefitinib, and afatinib are considered to all have similar efficacy in
EGFR mutated NSCLC and are all generally well tolerated. Some data suggests that
afatinib may be slightly more efficacious but may also cause the most side effects,
and many clinicians start at a lower dose than used in the LUX-Lung trials. Some
data suggests gefitinib may be the best tolerated of the three agents, but the data is
inconsistent. One study randomized 256 patients to either erlotinib 150 mg PO QD
or gefitinib 250 mg PO QD and found no significant difference in PFS, ORR, OS,
and grade 3 or 4 toxicities. The ORR was 56.3% versus 52.3% (P = 0.53), and the
median OS was 22.9 versus 20.1 months (P = 0.25) [55]. The LUX-Lung 7 trial
assessed afatinib 40 mg PO QD versus gefitinib 250 mg PO QD and found that
median OS was 27.9 months with afatinib versus 24.5 months with gefitinib (HR
0.86, CI 0.62–1.36) [56]. In this trial, although there was no significant difference in
OS with afatinib, PFS was improved with afatinib versus gefitinib [56].

The majority of patients who initially respond to an EGFR TKI eventually
develop resistance to the drug and have progression of disease. We have already
discussed using osimertinib in patients who develop T790M resistance after treat-
ment with a first- or second-generation EFGR TKI. There are other mechanisms of
resistance that can develop. One mechanism of resistance is the amplification of the
MET oncogene. This has been linked to resistance in 5–20% of patients taking
erlotinib or gefitinib [57]. This has been linked to resistance in up to 30% of patients
taking osimertinib [58]. Another interesting but less common mechanism of
resistance is histologic transformation of EGFR mutated NSCLC into small-cell
lung cancer [59]. In one analysis of 37 tumor biopsies taken after progression on
EGFR TKI therapy, 5 resistant tumors (14%) transformed from NSCLC into
small-cell lung cancer; these tumors were sensitive to standard small-cell lung
cancer chemotherapy regimens [59]. Although it is not standard of care, it may be
reasonable to biopsy a site of progressive disease to determine if another targetable
mutation is present or if there has been a transformation in histology.

There has been some investigation into whether or not continuing an EGFR TKI
after progression has benefit. One retrospective analysis looked at Japanese patients
with EGFR mutations who progressed on first- or second-line EGFR TKI and
compared those who continued EGFR TKI beyond progression (39 patients) and
those who were switched to cytotoxic chemotherapy alone (25 patients). The
median OS was 32.2 months in the group receiving the EGFR TKI beyond pro-
gression and 23 months in the group receiving chemotherapy (HR 0.42, CI 0.21–
0.83, p = 0.013) [60]. However, a prospective study is needed to confirm these
results. Due to anecdotal evidence that EGFR-positive lung cancer can progress
more rapidly even after progression when discontinuing EGFR TKI therapy, some
clinicians elect to continue the EGFR TKI therapy until the next line of therapy can
be initiated.

1 Targeted Therapies in Non-small-Cell Lung Cancer 13



There has also been investigation into whether adding bevacizumab to EGFR TKI
therapy adds benefit. During the JO25567 trial, 154 patients in Japan with EGFR
mutations and no prior therapy were assigned to either erlotinib 150 mg PO QD
alone or erlotinib plus bevacizumab 15 mg/kg every 3 weeks until disease pro-
gression or unacceptable toxicity. Median PFS with erlotinib plus bevacizumab was
16 months versus 9.7 months with erlotinib alone (HR 0.54, CI 0.36–0.79) [61].
Serious adverse events occurred at a similar frequency in both groups (*25%) [61].
The overall survival data is not yet mature. The combination of erlotinib plus
bevacizumab is approved by the European Medicines Agency in Europe.

Finally, there has been investigation into whether adding chemotherapy to
EGFR TKI therapy adds benefit. In the FASTACT-2 trial, 451 patients with were
assigned to either chemotherapy (gemcitabine plus platinum) plus erlotinib or
chemotherapy plus placebo. In the patients with an EGFR activating mutation, PFS
was improved with chemotherapy plus erlotinib (7.6 vs. 6.0 months) and OS was
improved with chemotherapy plus erlotinib (18.3 vs. 15.2 months) [62]. Another
study evaluated gefitinib with and without pemetrexed in chemotherapy-naïve
patients with EGFR-positive NSCLC. Median PFS was longer with gefitinib with
pemetrexed (15.8 vs. 10.9 months, HR 0.68, CI 0.48–0.96) [63]. Overall survival
data is immature.

Although these studies have shown a possible benefit of combining
chemotherapy with EGFR TKI, four large randomized clinical trials using gefitinib
or erlotinib all failed to show a survival benefit from the combination with
chemotherapy [64–67]. However, these trials did not select patients based on the
presence of an EGFR driver mutation so further investigation is needed in this area.
In the IMPRESS trial, 265 patients with an EGFR mutation who had disease
progression on gefitinib were assigned to cisplatin, pemetrexed, gefitinib or to
cisplatin, pemetrexed, placebo. Patients completed 6 cycles of chemotherapy and
then were continued on gefitinib or placebo for maintenance. There was no sig-
nificant difference in median PFS (5.4 vs. 5.4 months, HR 0.86, CI 0.65–1.13) [68].
There was a decrease in median OS in those on chemotherapy plus gefitinib versus
chemotherapy alone (13.4 vs. 19.5 months, HR 1.44, CI 1.07–1.94) [68]. At this
time, patients with advanced EGFR-positive NSCLC generally do not receive
combination chemotherapy with an EGFR TKI as initial therapy outside of a
clinical trial.

1.5 Anaplastic Lymphoma Kinase (ALK)

Anaplastic lymphoma kinase (ALK) driver mutations are found in a variety of solid
tumors. ALK receptor tyrosine kinase gene, located on chromosome 2p23, encodes
a receptor that belongs to the insulin receptor superfamily. The protein is made up
of an extracellular, transmembrane, and intracellular domain. It is believed that
ALK plays a role in the development of neurons in the central nervous system.
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Activation of ALKs kinase catalytic domains has been implicated in the growth
and development of cancer. Multiple pathways are involved, including phospho-
lipase Cc (PLCc), Janus kinase (JAK)–signal transducer and activator of tran-
scription (STAT), PI3K–AKT, mTOR, sonic hedgehog (SHH), JUNB, CRKL–
C3G–RAP1 GTPase, and MAPK. The most common mechanisms that are involved
in ALK mutations are chromosomal translocations or rearrangements. The resultant
oncogenic ALK fusion gene results in constitutive ALK activity.

The FDA has approved testing to identify ALK rearrangements with immuno-
histochemistry (IHC) and fluorescent in situ hybridization (FISH). In addition, ALK
rearrangements and their resultant fusion proteins can also be identified via reverse
transcription polymerase chain reaction (RT-PCR).

EML4-ALK is identified in 2–7% of all non-small-cell lung cancers, most
prevalent in non-smokers, light smokers, and adenocarcinomas. These patients with
ALK fusion lung cancers are relatively younger than typical NSCLC patients.
Histologically almost all ALK fusion oncogenes are adenocarcinoma. In addition,
signet ring cells, which portend for a poor prognosis and are associated with a more
aggressive clinical course, have been identified to be more common.

The optimal approach to treat advanced NSCLC with an ALK fusion variant first
line is an ALK inhibitor. The first ALK inhibitor approved by the FDA to treat
metastatic NSCLC with an ALK rearrangement was crizotinib in 2011 under the
accelerated approval process.

1.5.1 Crizotinib

Crizotinib, a first-generation ALK inhibitor, is a small-molecule tyrosine kinase
inhibitor. Crizotinib was approved by the FDA after a phase I trial [69] with
confirmatory trials in phases II [70] and III [71]. PROFILE 1014 compared
crizotinib to a platinum doublet with pemetrexed for first-line treatment in advanced
ALK rearranged NSCLC. Crizotinib had improved PFS, RR, and duration of
response compared to traditional cytotoxic therapy. Crizotinib unfortunately has
poor CSF penetration with the second- and next-generation ALK inhibitors shown
to have better response rates intracranially [72].

1.5.2 Ceritinib

Ceritinib, a second-generation ALK inhibitor, initially received accelerated
approval in 2014 for advanced NSCLC patients who progressed or who were
intolerant to crizotinib based on the phase I study ASCEND-1 [73]. The phase III
study ASCEND-4 compared ceritinib to front doublet platinum therapy and was
found to be superior. Ceritinib has proven in preclinical studies to have activity
against crizotinib-resistant cells including gatekeeper mutation L1196M.
ASCEND-5 has also been evaluated in those who progressed on crizotinib to either
ceritinib or single-agent chemotherapy with improvements in PFS and RR [74].
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Ceritinib is currently approved to be used in either treatment-naïve ALK rearranged
advanced NSCLC patients or those who have progressed on crizotinib.

1.5.3 Alectinib

Alectinib, also a second-generation ALK inhibitor, received accelerated approval in
2015 for ALK-positive metastatic NSCLC who progressed or who are intolerant to
crizotinib after two single-arm clinical trials [75–77]. Alectinib is active against
gatekeeper mutation L1196M and other crizotinib-resistant mutations such as
C1156Y and F1174L. ALEX, an open-label phase III trial, compared alectinib and
crizotinib in treatment-naïve advanced NSCLC. The primary end point, PFS, was
superior in alectinib (25.7 months) compared to 10.4 months with crizotinib (HR
0.53; p < 0.0001) [78]. For CNS progression, a secondary end point in this study,
alectinib showed superior aversion to progression in CNS in comparison with
crizotinib (12% vs. 45%, respectively) [78]. The results of this study led to the
approval of alectinib for use in treatment-naïve, ALK rearranged advanced NSCLC
and is the treatment of choice in this setting.

1.5.4 Brigatinib

Brigatinib is a second-generation tyrosine kinase inhibitor, with potent activity
against active ALK, developed to treat advanced NSCLC for those patient who
have progressed or intolerant to crizotinib with activity against active ALK, and
mutant L1196M. In 2017, the drug received accelerated approval based on the
randomized, open-label, non-comparative, phase II ALTA study designed to
evaluate anti-tumor activity of brigatinib in patients with metastatic ALK-positive
NSCLC who have previously received crizotinib demonstrated improved PFS
compared to historical data for patients who progressed on crizotinib (9.2 mo
90 mg/d vs. 12.9 mo 180 mg/d) [79]. Further investigation in the frontline setting is
currently taking place with ALTA-1L. Brigatinib is approved to be used in crizo-
tinib refractory or intolerant, advanced ALK rearranged NSCLC setting.

1.5.5 Lorlatinib

Lorlatinib is a novel third-generation, ALK inhibitor designed to overcome
ALK-resistant mutations including G1202R, and improved CNS penetration was
granted FDA breakthrough designation in 2017. It has shown promise (46% ORR,
9.6 mo PFS) in its first in human open-label phase I study in advanced
ALK-positive NSCLC [80]. It is unclear in the sequence of available therapies
where lorlatinib will lie but currently considered to be used in patients’ refractory to
second-generation inhibitors or multiple TKIs. An investigation for its efficacy in
the first-line setting is being investigated currently (NCT03052608).
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1.6 ROS Proto-oncogene 1 (ROS-1)

1.6.1 ROS-1 (Reactive Oxygen Species-1)

ROS-1 was initially discovered as the cellular homolog of the chicken c-ros gene.
This gene is the proto-oncogene for v-ros which is the transforming sequence of
UR2 sarcoma virus [81]. It is located at chromosome 6q22 and encodes for a
receptor tyrosine kinase belonging to the insulin receptor family closely related to
anaplastic lymphoma kinase (ALK) and leukocyte receptor tyrosine kinase
(LTK) [82]. ROS1 protein expression in adult humans appears to be the highest in
kidney but is also found in cerebellum, peripheral neural tissue, stomach, small
intestine, and colon, with lower expression in several other tissues and absent in
lungs. In mouse model studies, mice that lack the receptor appear to be healthy. No
ligands for the receptor have been found.

Constitutive activation of ROS1 signaling leads to the phosphorylation of SHP-2
(tyrosine phosphatase, non-receptor type 11) and activation of downstream sig-
naling pathways such as MEK/ERK, JAK/STAT, or PI3K/AKT [83]. Chromoso-
mal rearrangements involving the ROS1 gene were originally described in
glioblastomas, where ROS1 (chromosome 6q22) is fused to the FIG gene located on
chromosome 6q22 immediately adjacent to ROS1. Known ROS1 fusion partners in
lung cancer include FIG, CD74, SLC34A2, and SDC. Expression of the FIG-ROS1
and SDC4-ROS1 fusions in murine Ba/F3 cells has been demonstrated to result in
IL3 independent proliferation, and this proliferation was sensitive to treatment of
small-molecule ROS1 inhibitors [84].

Crizotinib is approved as the first-line therapy for advanced ROS1 fusion-positive
NSCLC. ROS1-positive NSCLC demonstrated a 72% response rate and 19.2-month
median progression-free survival in a phase I expansion cohort [73]. To date,
acquired resistance to crizotinib has been reported in clinical studies because of the
secondary S1986Y/F, G2032R, and D2033N mutations in ROS1. Preclinical data
has suggested that missense mutations within the ROS1 kinase domain can drive
acquired resistance to crizotinib. A patient with a crizotinib-sensitive NSCLC har-
boring a CD74-ROS1 fusion was found to have an acquired ROS1 G2032R
mutation at the time of progression. However, preclinical data suggests that the
next-generation ALK/MET/ROS1 inhibitors cabozantinib, foretinib, and
PF-06463922 are capable of overcoming this resistance mutation [85].

1.7 V-Raf Murine Sarcoma Viral Oncogene
Homolog B1 (BRAF)

1.7.1 BRAF in Non-small-Cell Lung Cancer

Mutations in the BRAF proto-oncogene were first described in 2002 with an
incidence of 8% across all cancers and 3% in lung cancer [86]. The BRAF

1 Targeted Therapies in Non-small-Cell Lung Cancer 17



proto-oncogene encodes the intracellular B-Raf protein. The B-Raf protein phos-
phorylates and activates downstream MEK, which in turn phosphorylates and
activates downstream ERK. This signaling pathway leads to the upregulation of
genes promoting cell proliferation and survival. In healthy cells, this signaling
pathway is modulated by extracellular signals such as growth factors transmitting
information to the cell via transmembrane receptors. However, in cancer cells with
a BRAF mutation, this regulation is lost due to constitutive activation of the B-Raf
protein. This leads to increased cell proliferation and survival independent of
extracellular factors [87].

BRAF mutations occur in 1–3% of patients with NSCLC [88–90]. The most
common mutation is V600E, which is an amino acid substitution at position 600
from a valine to a glutamic acid. Other described mutations include G469A,
D594G, K601E, G464E, G596R, A598T, G606R, and G469V [88, 89]. The BRAF
V600E mutation is generally cited to be approximately 50% of all BRAF mutations
in NSCLC, although various studies have documented rates from 30 to 80% [88,
91]. Compared to BRAF V600E mutations in melanoma, BRAF V600E mutations
in NSCLC are less common.

To date, NSCLC patients with BRAF mutations are not statistically more likely
to belong to a particular gender, sex, or race [91]. There is no unique histologic
subtype that is more likely to harbor a BRAF mutation [89, 91]. There is no
association of BRAF mutations with stage of disease at diagnosis [91]. Only
smoking history consistently correlates with BRAF mutation status [89, 91, 92].
The majority of patients with BRAF mutations are former or current smokers. This
signal is particularly strong with non-V600E mutations since patients with V600E
mutations are more likely to be light/never smokers [92].

In general, concurrent mutations with other driver mutations in patients with
BRAF mutations are rare. However, concurrent mutations have been reported with
BRAF V600E or BRAF non-V600E mutations and mutations in other genes
including EGFR, KRAS, ALK, and PIK3CA [88, 89, 91, 92].

Multiple studies have evaluated the prognosis and overall survival of patients
with a BRAF mutation in NSCLC. Compared to patients with NSCLC with other
driver mutations, patients with BRAF mutations had no statistically different overall
survival [89]. In a study with 63 patients with BRAF mutations, their overall
survival was intermediate between patients with EGFR and KRAS mutations but
this was not statistically different [92]. In early-stage disease, there is no difference
in overall survival between mutation types [92]. Overall survival may be slightly
better with BRAF V600E mutations compared to non-V600E mutations, which
may reflect the lighter smoking history of the former [92]. Finally, patients with
concurrent driver mutations do have shorter overall survival compared to those with
a single driver mutation [91].

Two BRAF inhibitors, vemurafenib and dabrafenib, have shown clinical activity
in metastatic BRAF V600E mutated lung cancers. Vemurafenib works by inhibiting
the active form of the B-Raf kinase by attaching to the ATP-binding site. In 2015,
Hyman et al. evaluated vemurafenib in multiple non-melanoma cancers with BRAF
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V600 mutations in a histology-independent phase II “basket” trial. A total of 122
patients with BRAF V600E mutations with various histologies received vemu-
rafenib (960 mg, PO, BID) until progression of disease or unacceptable toxicity. In
the 19 patients with NSCLC, there was a response rate (RR) of 42% (95% CI 20–
67) with 8 patients having a partial response. Tumor regression was observed in
most patients (14 of 19 patients). The median progression-free survival (PFS) was
7.3 months (95% CI 3.5–10.8). The 12-month overall survival (OS) was 66%. The
majority of these patients received prior platinum-based chemotherapy. Common
side effects included rash (68%), fatigue (56%), and arthralgia (40%) [93].

In 2016, Planchard et al. evaluated another BRAF inhibitor dabrafenib in
patients with BRAF V600E mutations in advanced NSCLC in a phase II trial.
Dabrafenib is an adenosine-triphosphate competitive inhibitor of B-Raf kinase that
is selective for the V600E mutant. In this study, 84 patients with metastatic BRAF
V600E NSCLC received dabrafenib (150 mg, PO, BID). Out of 6 patients who had
no prior treatment, 4 (66%) had a partial response. Out of the remaining 78 patients
who had prior treatment, 26 (33% [95% CI 23–45]) had an overall response
(CR + PR). There was disease control in 58% of patients. The response was quick
with 73% of responses occurring at 6 weeks. The side effects were mostly skin
related with 42% of patients experiencing some adverse events. Grade 3 or 4
adverse reactions included cutaneous squamous cell carcinoma (12%), basal cell
carcinoma (5%), and asthenia (5%). One patient died from an intracranial hemor-
rhage while concurrently taking a factor Xa inhibitor [94].

Unfortunately, treatment with a BRAF inhibitor alone can lead to resistance
within 6–7 months in other tumor types. The BRAF inhibitor dabrafenib plus the
MEK inhibitor trametinib has shown synergistic anti-tumor activity in BRAF
mutant human cancer cell lines. Planchard et al. evaluated dabrafenib (150 mg, PO,
BID) plus trametinib (2 mg, PO, QD) in patients with previously treated BRAF
V600E mutant metastatic NSCLC. Out of 57 patients, 36 patients responded (63%
[95% CI 49.3–75.6]). Approximately 79% of patients obtained disease control
(CR + PR + stable disease). The median PFS was 9.7 months (95% CI 6.9–19.6).
The median duration of treatment was 10.6 months with 30% of patients receiving
treatment for more than 12 months. Common adverse events included fever, nau-
sea, vomiting, diarrhea, asthenia, and anorexia. Grade 3–4 toxicity included neu-
tropenia (9%), hyponatremia (7%), and anemia (5%). The combination of
dabrafenib and trametinib had a high overall response rate, often a prolonged
duration of response and manageable toxicity [95].

Planchard et al. also evaluated dabrafenib and trametinib in patients with pre-
viously untreated BRAF V600E mutant NSCLC. The study included 36 patients
with an overall response rate of 64% (95% CI 46–79) and PFS of 10.9 months
(95% CI 7.0–16.6). The median duration of response was 10.4 months, and the
median overall survival was 24.6 months. The 2-year overall survival was 51%. Of
note, there were similar response rates between patients who had been previously
treated and those who had not (63% vs. 64%). Furthermore, PFS was similar
between the previously treated and untreated groups (9.7 vs. 10.9 months). This
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suggests that treating clinicians have flexibility to treat patients with dabrafenib and
trametinib in either the first-line metastatic setting or in the second line following
chemotherapy [96].

1.8 MET Proto-oncogene (MET)

1.8.1 MET in Lung Cancer

MET proto-oncogene, located on chromosome 7q31, was identified in early 1980s.
Its protein product is a transmembrane tyrosine kinase, which binds to the ligand
scatter factor/hepatocyte growth factor (HGF). The downstream signaling activates
the mitogen-activated protein kinase (MAPK), phosphoinositide-3-kinase (PI3K)/
AKT, signal transducer and activator of transcription proteins (STATs), and nuclear
factor kappa B (NF-kB) pathways, thus promoting proliferation, escaping apopto-
sis, and increasing cell motility [97–100].

MET pathway abnormality is commonly found in lung cancer. The mechanisms
include protein phosphorylation (p-MET), overexpression, amplification, rear-
rangement, and mutations [101]. Mutations in the splicing sites that cause MET
exon 14 skipping are the most studied MET abnormality which occurs in around 3–
4% of lung adenocarcinoma and 2% of SCC [102, 103]. Exon 14 of MET encodes
the juxtamembrane domain of the protein, which is the binding site for E3 ubiquitin
ligase for protein degradation; thus, skipping of exon 14 causes prolonged signal
transduction of the MET pathway, which leads to cell proliferation and migration,
and subsequently facilitates oncogenesis, cancer invasion, and metastasis [104,
105]. MET gene rearrangement is less reported, but the kinase fusion KIF5B-MET
has been reported in lung adenocarcinoma [106]. Overexpression of MET is found
in around 35–72% of the NSCLC, and p-MET can be found in 67% of the NSCLC,
while amplification of MET is around 2–5% of newly diagnosed adenocarcinoma
[107, 108]. The MET gene copy number (GCN) is associated with worse prognosis
in surgically resected NSCLC, with overall survival (OS) of 25.5 months for
patients with MET � 5 copies/cell compared with 47.5 months for patients with
MET < 5 copies/cell (P = 0.0045) [109].

Studies of targeting MET pathway in cancer have been ongoing for decades. The
available agents and clinical trials have been summarized in recent reviews [108,
110]. There are small molecular tyrosine kinase inhibitors such as selective inhi-
bitor tivantinib (targets MET), capmatinib (targets MET), savolitinib (targets MET),
tepotinib (targets MET), SAR125844 (targets MET), sitravatinib (targets MET),
AMG 337 (targets MET), non-selective inhibitor crizotinib (targets
ALK/ROS/MET), cabozantinib (targets MET/RET/others), glesatinib (targets
MET/AXL/others), merestinib (targets MET/ROS1/AXL/FLTs/others), S49076
(targets MET/AXL/FGFR1-3), as well as monoclonal antibodies including emi-
betuzumab (anti-MET), onartuzumab (anti-MET), rilotumumab (anti-HGF), and
ficlatuzumab (anti-HGF) [108, 110].
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Various clinical trials have investigated the efficacy of MET inhibition in lung
cancer. Responses to non-selective MET inhibitors crizotinib and cabozantinib
were reported in lung adenocarcinoma with MET abnormalities; however,
cabozantinib also has activity against RET and had 28% overall response rate in a
phase II clinical trial of 26 patients with RET-rearranged lung adenocarcinoma
[111, 112]. So far the results of clinic trials for the selective MET inhibitors are not
satisfactory, which may be partially due to lack of valid predictive biomarkers for
patient selection as discussed previously [108, 110]. In the phase III OAM4971g
(METLung) trial comparing erlotinib plus onartuzumab versus erlotinib plus pla-
cebo in patients with locally advanced or metastatic NSCLC with MET overex-
pressing defined by MET IHC staining, there is no difference in clinical outcomes
(median OS was 6.8 vs. 9.1 months for onartuzumab vs. placebo, P = 0.067), with
shorter OS in the onartuzumab arm, compared with erlotinib in patients with
MET-positive non-small-cell lung cancer, and the median progression-free survival
was 2.7 versus 2.6 months (stratified HR, 0.99; 95% CI 0.81–1.20; P = 0.92) with
overall response rate of 8.4 and 9.6% for onartuzumab versus placebo, respectively
[113]. A phase III trial of tivantinib (ARQ 197) plus erlotinib versus erlotinib alone
in previously treated locally advance or metastatic non-squamous NSCLC reported
by Scagliotti et al. in 2015 [114] showed OS did not improve, although PFS
increased (median PFS, 3.6 vs. 1.9 months; HR, 0.74; 95% CI 0.62–0.89;
P < 0.001). Subgroup analyses suggested OS improvement in patients with high
MET expression (HR, 0.70; 95% CI 0.49–1.01). Most common adverse events
occurring were rash (33.1% vs. 37.3%, respectively), diarrhea (34.6% vs. 41.0%),
asthenia or fatigue (43.5% vs. 38.1%), and neutropenia (grade 3–4; 8.5% vs. 0.8%).
It has been reported that MET amplification can increase to 5–22% after treatment
with EGFR TKI erlotinib or gefitinib [115]. A phase II study of erlotinib plus
tivantinib in 45 patients with locally advanced or metastatic EGFR
mutation-positive non-small-cell lung cancer just after progression on EGFR TKI
erlotinib or gefitinib did not prove clinical benefit of tivantinib in patients with
acquired resistance to EGFR TKIs; however, the patients having high activated
MET signaling have longer survival by tivantinib/erlotinib (c-Met high vs. low:
median PFS 4.1 vs. 1.4 months; median OS 20.7 vs. 13.9 months) [116].
The ATTENTION study [117], a phase III trial of erlotinib plus tivantinib versus
erlotinib in stage IIIB/IV Asian non-squamous NSCLC with wild-type EGFR, was
prematurely terminated due to the increased interstitial lung disease (ILD) incidence
in the tivantinib group. ILD developed in 14 patients (3 deaths) and 6 patients (0
deaths) in the tivantinib and the placebo groups, respectively, in total of 307
patients enrolled. Median OS was 12.7 and 11.1 months in the tivantinib and the
placebo groups, respectively [hazard ratio (HR) = 0.891, P = 0.427]. Median PFS
was 2.9 and 2.0 months in the tivantinib and the placebo groups, respectively
(HR = 0.719, P = 0.019). Although this study lacked statistical power because of
the premature termination and did not demonstrate an improvement in OS, the
results suggest that tivantinib plus erlotinib might improve PFS compared to
erlotinib alone in non-squamous NSCLC patients with WT-EGFR. The overex-
pression or phosphorylation of MET is less predictive for the response to MET
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inhibitors; according to the above-mentioned negative data and correlations
between MET germline mutations, MET amplification, somatic mutation, overex-
pression, and activation with treatment responses have not been confirmed yet
[113]. Targeting MET pathway is promising; however, we need better strategies to
select the patients who are going to benefit from it [108].

MET mutations are frequently associated with other gene mutations (around
44%), and there are cross talks between MET pathway and other pathways such as
mTOR, PI3K/AKT, STATs, MEK pathways, which may blunt the clinical benefit
of MET inhibition [118]. Based on the synthetic lethality [119], combination of
MET inhibitor and other pathway inhibitors could be an effective strategy. In a
phase I study of tivantinib plus the mTOR inhibitor temsirolimus, the pharma-
cokinetic analysis showed no interaction in the plasma concentrations of the two
drugs and the combination appears to be well tolerated with clinical activity [120].
MET abnormality is also common in NSCLC patients with brain metastases [121].
MET-amplified recurrent glioblastoma have been shown to respond to crizotinib
treatment [122]. Intracranial activity of cabozantinib has also been shown in MET
exon 14 skipping NSCLC patient with brain metastasis [123]. MET inhibitors
penetrate the blood–brain barrier and could be effective for brain metastasis,
especially for patients who failed the EGFR inhibitors due to brain metastasis.

1.9 Tropomyosin-Related Kinase (TRK) and (Rearranged
During Transfection Kinase) RET

1.9.1 TRK

Tropomyosin receptor kinase (Trk) receptor family comprises 3 transmembrane
proteins referred to as Trk A, B, and C receptors (TrkA, TrkB, and TrkC) that are
encoded by the NTRK1, NTRK2, and NTRK3 genes [124]. These receptor tyrosine
kinases are expressed in human neuronal tissue, activate neurotrophin (NTs), and
play an role in nervous system. The NTRK1 gene is located on chromosome
1q21-q22, and mutation of which disrupts the function of the TrkA protein which
can cause congenital insensitivity to pain with anhidrosis. The NTRK2 gene is on
chromosome 9q22.1 (codes for TrkB receptor). The NTRK3 gene is located on
chromosome 15q25 (TrkC) expressed in the human hippocampus, in the cerebral
cortex, and in the granular cell layer of the cerebellum. Reported gene fusion
SQSTM1-NTRK1, NTRK1-SQSTM1, CD74-NTRK 1, MPRIP-NTRK1,
TRIM24-NTRK2, RFWD2-NTRK1. Gene fusions involving NTRK genes lead to
the transcription of chimeric Trk proteins which elevates kinase function, resulting
in oncogenic potential. Entrectinib is an orally bioavailable inhibitor of the tyrosine
kinase TrkA, TrkB, and TrkC as well as of c-ros oncogene 1 (ROS1) and anaplastic
lymphoma kinase (ALK). Entrectinib can cross the blood–brain barrier and could
thus potentially be effective in the treatment of brain metastases and GBM with
activating gene fusions of NTRK, ROS1, or ALK. In the subgroup of NTRK-
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rearranged cancers, 100% of patients (n = 5) with various tumor histologies and
fusion types responded to entrectinib treatment and had a good intracranial activity
[125].

There are phase I trials investigating Altiratinib (DCC-2701) and sitravatinib
(MGCD516) which are multi-kinase inhibitors with reported in vitro inhibitory
activity against TrkA and TrkB. Other Trk inhibitors that are being investigated in
phase I/II trial include TSR-011, PLX7486, DS-6051b, F17752, and cabozantinib
(XL184). Larotrectinib is a selective small-molecule pan-TRK inhibitor currently
being investigated in an adult/adolescent phase II trial. Primary objective of the trial
was investigator-assessed overall response rate which was 78%, and duration of
response has not reached [126]. NTRK gene fusions are emerging as novel target;
however, due to the low incidence of Trk alterations across multiple histologies, it
is challenging to study the various targets.

1.9.2 RET

RET (rearranged during transfection) is a proto-oncogene which through cytoge-
netic rearrangement and activating point mutations can undergo oncogenic acti-
vation. RET is localized to human chromosome 10q11.2. The expression of RET is
the highest during development and the lowest in normal adult tissues. It is pre-
dominately expressed in neural crest-derived cells and urogenital cells. RET is
required for the development of the enteric nervous system, kidney morphogenesis,
and spermatogenesis [127]. Distinct chromosomal translocations produce different
RET fusions which occur in 1–2% of NSCLCs and are mutually exclusive of
mutations in EGFR, KRAS, ALK, HER2, and BRAF.

RET-rearranged lung adenocarcinomas (LUADs) are often found in never
smokers (82%) and overall younger patients (� 60 years; 73%), more poorly dif-
ferentiated (64%), solid subtype (64%), have a smaller size (� 3 cm) with N2
disease (54%). RET has been shown to form fusions with eight different genes in
NSCLC: KIF5B (most common), CCDC6, NCOA, TRIMM33, CUX1, KIAA1468,
KIAA1217, and FRMD4A. Reverse transcriptase polymerase chain reaction
(RT-PCR) is both sensitive and specific for the detection of known fusions, but it is
not reliable for the detection of new fusion partners or isoforms. Currently, a few
drugs have been investigated in phase II studies for RET-positive lung adenocar-
cinoma. Cabozantinib, an oral multi-kinase inhibitor of RET, was investigated in a
phase II study (n = 25) which showed an objective response rate (ORR) of 28%.
The median progression-free survival (PFS) was 5.5 months (95% CI [3.8, 8.4]),
and the median overall survival (OS) was 9.9 months (95% CI [8.1, not reached]).
Vandetanib, an oral RET, VEGFR-2, and EGFR kinase inhibitor, demonstrated an
ORR of 18%, and a disease control rate (DCR) of 65% in patients with
advanced/refractory RET-rearranged NSCLC. The PFS was 4.5 months, and the OS
was 11.6 months. The 1-year OS rate was 33%. Ten out of 18 patients (56%) had
died at the data cutoff. Lenvatinib, a multi-kinase inhibitor, achieved an ORR of
16% (four patients with partial responses), and a DCR of 76% with 48% of patients
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showed a durable response. Other multi-kinase inhibitors currently being investi-
gated include Alectinib, a tyrosine kinase inhibitor of ALK that is also active
against RET in vitro, and ponatinib. Studies showed that different multi-kinase
inhibitors may produce variable responses depending on the type of RET fusion.
RET inhibitor resistance was also found and investigated. Huang et al. recently
identified cabozantinib-resistant KIF5B-RETV804L and the vandetanib-resistant
KIF5B-RETG810A mutations in lung adenocarcinoma cells. Interestingly,
vandetanib-resistant KIF5B-RETG810A mutant cells displayed gain of sensitivity to
ponatinib and lenvatinib, suggesting that the different RET inhibitors can overcome
vandetanib-induced mechanisms of resistance. A recent study of lung cancer cells
that had CCDC6-RET genes suggested that activation of EGFR signaling may
allow the cells to become resistant to RET inhibition via a bypass survival signaling
through ERK and AKT. The combination of vandetanib and the mTOR inhibitor
everolimus has demonstrated higher anti-tumor activity than either single agent
alone. The combination is being further studied. At present, RET-mutated patients
are a very small subgroup, which poses a challenge to develop a targeted therapy;
however, identifying biomarkers in patients with NSCLC may result in clinical
benefit from RET inhibitors and continues to be an active area of investigation
[128].

1.10 Checkpoint Inhibitors

Immunotherapy has had drastic impacts on the treatment of some types of tumors
including melanoma, renal cell cancer, and non-small-cell lung cancer.
Immunotherapy in lung cancer has been used either as a single-agent or in com-
bination with chemotherapy in a first- or second-line treatment setting in the recent
times. Our own immune system consisting of the adaptive and innate immunity is
one of the mechanisms of defense against tumor cells. Specifically, the immune
response is initiated when T cell receptor recognizes and binds to major histo-
compatibility complex (MHC) on the surface off the antigen presenting cell
(APC) or the tumor cells, which leads to the interaction between cytokines and
stimulatory signals causing T lymphocyte activation, proliferation, and differenti-
ation (Fig. 1.1).

However, the activation and proliferation of T cells are affected by inhibitory
immune checkpoint molecules such as the cytotoxic T lymphocyte-associated
protein 4 (CTLA-4), programmed cell death 1 (PD1), and programmed death ligand
1 and 2 (PD-L1, PDL2). For example, the interaction between CD28 on T cells and
B7 on the APCs is a key step in activation of T cells; however, CTLA-4 competes
with CD28 for binding to B7 and transmits an inhibitory signal that suppresses T
cell activation. PD-L1/2 is expressed on the surface of multiple cell types including
tumor cells and helps evade anti-tumor immune response. The interaction between
PD-L1 with APC and PD1 on T cells inhibits apoptosis in tumor cells, promotes
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peripheral T effector cell exhaustion, and promotes the conversion of T effector
cells to Treg cells [129, 130]. Other checkpoints which act as inhibitory receptors
expressed by T cells or NK cells such as T cell Ig and T cell immunoglobulin mucin
domain 3 (TIM3) and lymphocyte activation gene 3 (LAG3) and killer cell
immunoglobulin-like receptor (KIR) have been discovered as well [131, 132].
Therefore, targeted treatments that inhibit these checkpoint proteins could restore
and augment cytotoxic T cell responses, leading to potentially resilient responses
and prolonged overall survival (OS) with tolerable toxicity.

1.10.1 PD1/PD-L1/2 Inhibitors

1.10.1.1 Nivolumab
Nivolumab is a fully humanized IgG4-blocking antibody against PD-1 checkpoint
protein that disrupts interactions with PDL1/2. In an early phase I study of 39
patients with advanced metastatic melanoma, colon cancer, castrate resistant
prostate cancer, renal cell cancer, and non-small-cell lung cancer (NSCLC), nivo-
lumab was well tolerated with no dose-limiting toxicity. There was evidence of
anti-tumor activity in 6/39 patients in the dose escalating and expansion phase up to
the dose of 10 mg/kg [133].

Several phase II and III clinical trials have been performed with nivolumab to
improve the outcomes of patients with NSCLC. Currently, nivolumab is FDA
approved for the treatment of patients with advanced NSCLC who experience
progression of disease on or after standard platinum-based chemotherapy. Check-
Mate 057, a phase III randomized control trial compared nivolumab versus doc-
etaxel in a second-line treatment of advanced non-squamous NSCLC, showed a
median OS of 12.2 months (95% CI: 9.7–15.0) among 292 patients in the

Fig. 1.1 Mechanism of action of checkpoint inhibitors
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nivolumab group and 9.4 months (95% CI: 8.1–10.7) among 290 patients in the
docetaxel group (hazard ratio: 0.73; 96% CI: 0.59–0.89; P = 0.002) [134]. ORR
and median durations of response were higher in nivolumab arm (19 vs. 12% and
18.3 vs. 5.6 months, respectively) [134]. The 3-year OS rates for the nivolumab and
docetaxel arms were 18% and 9%, respectively [135]. Similarly, another phase III
trial (CheckMate 017) compared nivolumab (3 mg/kg, IV, Q2W) with docetaxel
(75 mg/m2, IV, Q3W) in 272 patients with advanced, squamous NSCLC who had
progressive disease on platinum-based doublet chemotherapy. OS was prolonged
with nivolumab compared to docetaxel (median OS: 9.2 vs. 6.0 months) [136]. The
two- and three-year OS rates for nivolumab versus docetaxel were 23% versus 8%,
and 16% versus 6%, respectively [135, 137]. ORR was higher with nivolumab
(20% vs. 9%), as was the duration of response (25.2 vs. 8 months) [136]. In terms
of toxicity, when compared to docetaxel, nivolumab had fever severe grade 3–4
treatment-related adverse effects (7–10% vs. 54%) [134, 136]. In the subgroup
analysis, OS benefit was only seen in non-squamous patients with increased tumor
PD-L1 expression. There was no OS improvement in PD-L1-negative tumors in the
non-squamous cohort and PD-L1 expressing tumors in the squamous cohort.
However, better side effect and toxicity profile of nivolumab makes it a better
choice than docetaxel [134, 136].

Currently, nivolumab as a single agent is not approved by FDA for the frontline
setting in treatment-naïve patients regardless of PD-L1 level. The CheckMate 026
trial which sought to compare the activity of nivolumab versus platinum doublet
chemotherapy in 541 treatment-naïve, PD-L1 positive (at least 1% of tumor cells
with PD-L1 staining) NSCLC patients did not show any prolongation of OS or PFS
with nivolumab [138] (Table 1.1). The combination of nivolumab plus ipilimumab
in lung cancer is currently being tested in the CheckMate 227 trial (Table 1.1). In
this trial, patients with PD-L1 expression level of at least 1% were randomly
assigned in 1:1:1 ratio to receive nivolumab plus ipilimumab, nivolumab
monotherapy, or chemotherapy. Additionally, patients with tumor PD-L1 expres-
sion less than 1% were randomly assigned in 1:1:1 ratio to receive nivolumab plus
ipilimumab, nivolumab plus chemotherapy or chemotherapy alone. In the recently
reported part 1 data (n = 299) of this trial, there was improvement in median PFS
with frontline nivolumab plus ipilimumab compared to chemotherapy among
patients with high tumor mutational burden (defined as >10 mutations per mega-
base) irrespective of PD-L1 expression level (7.2 months (95% CI: 5.5–13.2) vs.
5.5 months (95% CI: 4.4–5.8) [139]. The objective response rate was 45.3% with
nivolumab plus ipilimumab and 26.9% with chemotherapy [139]. The OS data is
not mature, but it is likely that after completion of this clinical trial, nivolumab will
gain FDA approval in certain patients with lung cancer in the first-line setting.

Nivolumab has also been studied in untreated patients with surgically resectable
early stage (stage I, II, or IIIA) NSCLC. In a phase I study with primary end point
of safety and feasibility, nivolumab (at a dose of 3 mg/kg) was given IV every
2 weeks, with surgery planned approximately 4 weeks after the first dose. The
study showed that neoadjuvant nivolumab was associated with few side effects, did
not delay surgery, and induced a major pathological response in 45% of resected
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tumors. The tumor mutational burden was predictive of the pathological response to
PD1 blockade [140].

1.10.1.2 Pembrolizumab
Pembrolizumab is another IgG monoclonal antibody that targets PD1 on T cells and
inhibits the interaction between PD1 and PD-L1 on the tumor cells. Currently, it is
approved by FDA for the frontline treatment of EGFR/ALK wild-type NSCLC with
at least 50% of tumor cells expressing PD-L1. This approval came after completion
of the phase III KEYNOTE024 trial which compared pembrolizumab monotherapy
to standard platinum-based chemotherapy in EGFR/ALK wild-type NSCLC with at
least 50% of tumor cells expressing PD-L1. There were both OS (6 month OS rate
of 80.2% vs. 72.4% with HR: 0.60; 95% CI: 0.41–0.89; P = 0.005) and PFS
(10.3 months vs. 6 months; HR: 0.50; 95% CI: 0.37–0.68; P < 0.001) benefit in the
pembrolizumab arm [141].

Recently, pembrolizumab in combination with pemetrexed and carboplatin also
received accelerated FDA approval for treatment of metastatic non-squamous
NSCLC, irrespective of the PD-L1 expression. This approval was based on the
KEYNOTE 021 phase II trial which compared chemotherapy alone or with pem-
brolizumab in 123 patients with advanced untreated non-squamous NSCLC without
any EGFR or ALK alterations. This study showed that patients who receive pro-
gressive map had better ORR (55 vs. 29%, 95% CI 8–42) and PFS (13 vs.
6 months; HR 0.53, 95% CI 0.31–0.91) [142]. These findings were later confirmed
in a larger phase III trial (KEYNOTE-189) which was reported this year and also
showed improvement in OS (12 month OS rate: 69% vs. 49%; HR: 0.49; 95% CI:
0.38–0.64), PFS (8.8 month vs. 4.9 months; HR: 0.52; 95% CI: 0.43–0.64) and
ORR (48% vs. 19%) in the platinum doublet plus pembrolizumab arm compared to
the chemotherapy plus placebo arm [143] (Table 1.1).

Pembrolizumab has also been approved for treatment of advanced NSCLC as a
second-line therapy after disease progression on platinum-based chemotherapy.
This approval was based on the phase II/III KEYNOTE-010 study in which patients
with disease progression on or after platinum-containing chemotherapy and had
>1% tumor cell PD-L1 expression as determined by the 22C3 pharmDx test
received either pembrolizumab (2 mg/kg or 10 mg/kg via IV) or docetaxel
(75 mg/m2) every 3 weeks. The HR and p value for OS was 0.71 (95% CI: 0.58–
0.88) and <0.001 comparing pembrolizumab (2 mg/kg) with chemotherapy and
0.61 (95% CI: 0.49–0.75) and <0.001 comparing pembrolizumab (10 mg/kg) with
chemotherapy [144].

1.10.1.3 Atezolizumab
Unlike nivolumab and pembrolizumab, atezolizumab is an antibody against PD-L1,
the ligand for PD-1. By binding to the PD-L1 receptor present on tumor cells
atezolizumab activates antibody depended cell mediated toxicity which enhances
immune system to fight tumor cells. Currently, it is approved for the management of
patients with metastatic NSCLC who are EGFR- or ALK-negative and have disease
progression on platinum-containing chemotherapy. This approval was based on a
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phase III randomized controlled trial (the OAK trial) comparing atezolizumab at
1200 mg, IV, every three weeks (n = 425) to docetaxel at 75 mg/m2, every
3 weeks (n = 425). OS was significantly better in the atezolizumab arm than the
docetaxel arm (13.8 months [95% CI: 11.8–15.7] vs. 9.6 months [95% CI: 8.6–
11.2]; HR: 0.73; 95% CI: 0.62–0.87; p = 0.0003). Patients with low PD-L1 or
undetectable expression levels also benefited with improvement in survival in the
atezolizumab arm [145].

Although atezolizumab has not been approved by FDA for the treatment of
NSCLC in a frontline setting, there are ongoing clinical trials that show promising
results. Specifically interim results of the phase III IMpower 131 trial showed
improvement in PFS (6.3 vs. 5.6 months; HR: 0.7; 95% CI: 0.60–0.85) when
patients were given platinum-based chemotherapy combined with atezolizumab
versus chemotherapy alone. The improvement in PFS was the most significant in
PD-L1-high (expression in � 50% of tumor cells) group (10.1 vs. 5.5 months; HR:
0.44; 95% CI: 0.27–0.71), but benefits were seen in all PD-L1-positive subgroups
and not in the PD-L1-negative subgroup [146] (Table 1.1). Final OS data is still
pending.

Recently another phase III trial, IMpower150, showed that addition of ate-
zolizumab to bevacizumab plus platinum-based chemotherapy can lead to improved
PFS (8.3 vs. 6.8 months; HR: 0.62; 95% CI: 0.52–0.74) and OS (19.2 vs.
14.7 months; HR: 0.78; 95% CI: 0.64–0.96) in patients with metastatic
non-squamous NSCLC, regardless of PD-L1 expression and EGFR or other genetic
alterations [147] (Table 1.1).

Overall, pembrolizumab currently remains the drug of choice in the frontline
setting for patients with NSCLC until other checkpoint inhibitors are approved by
FDA.

1.10.1.4 Durvalumab
Durvalumab, a humanized immunoglobulin G1 kappa monoclonal antibody that
blocks the binding of programmed cell death ligand 1 (PD-L1) to PD-1 and CD80
(B7.1), has been approved for treatment of unresectable stage III NSCLC that has
not progressed following concurrent platinum-based chemotherapy and radiation
therapy. This approval came on the basis of a large phase III trial (the PACIFIC
trial) in which patients with unresectable stage III NSCLC without any progression
after at least 2 lines of platinum-based chemotherapy were randomly assigned to the
PD-L1 antibody or placebo. The immunotherapy group had improved PFS (16.8 vs.
5.6 months; HR: 0.52; 95% CI: 0.42–0.65), response rate (28% vs. 16%; relative
risk [RR]: 1.78; 95% CI: 1.27–2.51), and median time to death or distant metastasis
(23.2 vs. 14.6 months; HR: 0.52: 95% CI: 0.39–0.69) [148]. However, OS data of
the study is still pending and therefore some investigators recommend against using
immunotherapy in patients with stage III lung cancer at this point.

30 A. Hill et al.



1.10.2 CTLA-4 Antagonists

The combination of a CTLA 4 inhibitor (ipilimumab) and a PD-1 blocker (nivo-
lumab) has shown promising results in chemotherapy-naïve patients with metastatic
NSCLC. However, without PD-1 blockade ipilimumab may not be as effective.
There was one phase II randomized control trial that compared ipilimumab plus
paclitaxel and carboplatin with paclitaxel and carboplatin alone as first-line treat-
ment. However, there was no statistical difference in primary end point of
progression-free survival between the two arms. In addition, there was no OS
benefit in the ipilimumab arm [149].

1.10.3 Toxicity Associated with Immune Checkpoint
Inhibitors

Although the immune checkpoint inhibitors are in general less toxic than
chemotherapies, there have been several reports of immune-related adverse events
that can occur occasionally. These immune-related adverse events include inflam-
matory reactions against normal cells apart from the tumor cells. Common side
effects include rash (33%), colitis (14%), endocrinopathies (8%), hepatitis (4%),
pneumonitis (2%), and acute kidney injury (2%) [150]. Other rare ones including
pancreatitis, Guillain-Barré syndrome or myasthenia gravis, myocarditis or venous
thromboembolism, thrombocytopenias or neutropenia, ocular inflammation, and
inflammatory arthritis. Management of grade 1 toxicities includes close monitoring
of patients and continuation of immune checkpoint inhibitors with the exception of
some toxicities such as neurotoxicity, cardiotoxicity, and hematological toxicity.
For grade 2 toxicities, immune checkpoint inhibitor treatment should be suspended
with resumption when symptoms revert to grade 1 or less. Corticosteroids may be
administered to help in reducing the inflammation. For grade 3 toxicities, high-dose
steroids should be initiated along with suspension of immunotherapy. Corticos-
teroids should be tapered slowly over the course of at least 4–6 weeks. If patients
are refractory to corticosteroids, then other forms of immunosuppressive agents
such as infliximab could be used. For any grade 4-related toxicity permanent dis-
continuation of checkpoint inhibitors is recommended with the exception of
endocrinopathies which can be controlled with hormone replacement therapy.
Specific recommendations for the management of adverse events with checkpoint
inhibitors have been published by American Society of Clinical Oncology [151].

1.10.4 Immunotherapy Biomarkers in Lung Cancer

With the approval of multiple checkpoint inhibitors, it is important to select the
appropriate patients who might benefit from this class of therapies. In majority of
the trials that led to the approval of these agents, it was noted that patients with
tumors expressing high levels of PD-L1 benefit the most. For example in the
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KEYNOTE 189 trial with chemotherapy-naïve patients, pembrolizumab showed
the highest OS benefit in patients with PD-L1 expression in � 50% of tumor cells
(12-month OS rate: 73.0% vs. 48.1%; HR: 0.42; 95% CI: 0.26–0.68) [143]. The
clinical trial CheckMate 227 showed improved PFS in patients with higher tumor
mutational burden which may be a new biomarker for immunotherapy.

One of the challenges facing these biomarkers is that PD-L1 and tumor muta-
tional burden in tumor samples may be heterogeneous and repetitive tumor biopsies
may be needed but is not always feasible [152]. Additionally, companion tests for
evaluating PD-L1 expression as a biomarker of response use a variety of detection
platforms for different forms (protein or mRNA), employ diverse biopsy and sur-
gical samples, and have disparate positivity cutoff points and scoring systems, all of
which complicate the standardization of clinical decision-making process [153].
Currently, four immunohistochemistry (IHC)-based assays using diagnostic mon-
oclonal antibodies, 22C3 (pembrolizumab), 28-8 (nivolumab), SP142 (ate-
zolizumab), or SP263 (durvalumab), to detect PD-L1 expression have been
approved by FDA. Finally, the expression levels of PD-L1 may change after
treatment with chemotherapy or immunotherapy and the patterns of resistance need
to be better studied. In case of clear progressive disease upon immunotherapy,
chemotherapy should be offered to the patients. However, if there are only 1 or 2
sites of progressive disease local modalities such as radiation or surgery with
continuation of immunotherapy may be considered. It is important to develop a
feasible, predictive, and reproducible biomarker which can predict patient response
and help improve the overall survival among all these immunotherapies.

1.11 Other Potential Immune Therapy Targets

1.11.1 HER2

ERBB2 gene, a proto-oncogene on chromosome 17q12, encodes the ERBB2
protein which is also known as human epidermal growth factor receptor 2 (Her2), a
tyrosine kinase receptor of the EGFR family. Her2 alterations have been detected in
1–4% of NSCLC tumors by multiplex testing and next-generation sequencing [154,
155]. These tumors are most commonly found in never smokers, adenocarcinomas,
and women. Aberrations on exon 20 lead to phosphorylation of Her2 and activation
of downstream pathways including RAS/RAF/MEK/ERK and PI3K/AKT/mTOR.
These pathways have been implicated in the cancer cell proliferation, survival,
growth, and tumor angiogenesis. The mutations most frequently found in Her2 gene
are in-frame insertions in exon 20. There are currently no approved targeted agents
for these patients. Her-2 targeted agents studied include: dacomitinib, neratinib,
neratinib in combination with temsirolimus, afatinib, trastuzumab in combination
with pertuzumab, and ado-trastuzumab emtansine. Response rates for these regi-
mens have been meager at best (0–19%) [156–158] with ado-trastuzumab emtan-
sine showing some of the most promise with a response rate up to 44% [159].
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Another drug under investigation, poziotinib has been shown to have robust
responses in preclinical models, and currently, there is a phase II study evaluating
Her2 exon 20 insertion mutant advanced NSCLC with poziotinib as a treatment
(NCT 03318939). Her2 amplification and Her2 exon 20 mutated advanced NSCLC
represent two distinct subsets of disease in an ever-expanding field of potential
clinically relevant targets.

1.11.2 Kirsten Rat Sarcoma Viral Oncogene Homolog (KRAS)

The KRAS gene (located on chromosome 12p12.1) is primarily involved in reg-
ulating cell division. It is a member of the RAS family of genes that encodes four
proteins that are highly related mediators of the mitogen-activated protein kinase
(MAPK) pathway: HRAS, KRAS4a, KRAS4b, and NRAS. These proteins function
as guanosine triphosphatases (GTPases) binary switches that turn on or turn off
multiple pathways involved in cancer cell survival, proliferation, angiogenesis, and
differentiation via effector proteins. KRAS mutations have been found to be one of
the most common oncogenic drivers in NSCLC (20–30%). The most common
KRAS mutations are G12C with KRAS transversions typical for smokers and
transitions typical for never smokers. Targeting RAS mutations remains elusive
with most of the research focusing on RAF/MAPK pathway or novel approaches to
RAS inhibition. MEK inhibitors such as trametinib and selumetinib have yet to
show any survival benefit in patients with KRAS mutations compared to
non-mutated patients [160–164]. Prior to activation of downstream effectors of
RAS, RAS attaches to the cell membrane via farnesyl transferase. Investigations on
utilizing farnesyl transferase inhibition have also failed to yield any promising
results [165, 166]. The RAF/MEK inhibitor, RO5126766 (CH5127566), has shown
some promising results in a basket trial with KRAS mutant NSCLC showing a 60%
response rate [167].

1.11.3 Phosphatidylinositol-4,5-Bisphosphate 3-Kinase
Catalytic Subunit Alpha (PIK3CA)

PI3K/AKT signaling promotes carcinogenesis and development of NSCLC.
PIK3CA encodes for PI3K which promotes cell survival. Its activation triggers
downstream AKT. Mutations in the pathway include gain of function mutations in
PIK3CA and AKT1 or loss of function mutations in the negative regulator protein
PTEN, which occur in 16% of cancer cases. These mutations are found predomi-
nantly in SCC and smokers. Investigation is ongoing to determine if these are
passenger or driver mutations. A variety of small molecules have been or currently
being investigated as single agents or in combination with others but thus far failed
to show improved efficacy over standard approaches [168–171]. Pictilisib in
combination with standard of care did show some encouraging anti-tumor activity
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as a first-line treatment in a phase IB dose-escalation study [172], but this activity
did not translate into improved PFS in the phase II FIGARO study [173].

1.11.4 Ephrin Type-B Receptor 4 (EPHB4)

EphB4 is a receptor found on venous endothelial cells, while its companion ligand
Ephrin B2 is often expressed on arterial endothelial cells. EphB4 is overexpressed
in epithelial tumors, which has been shown to be associated with poor prognosis in
a variety of tumor types. This induces bidirectional signaling between EphB4 and
EphB2 incudes the activation of PI3K/AKT/mTOR, Rho, Ras, Abl, Src, and
MAPK signaling pathways, leading to increased cancer cell migration, prolifera-
tion, and adhesion. A biologic drug, sEphB4-HSA, which interferes the interaction
between EphB4 and its ligand, has shown promising results in a dose finding phase
IA study [174]. sEphB4-HSA in combination with pembrolizumab is currently
under investigation in a phase II clinical trial (NCT03049618).

1.11.5 Fibroblast Growth Factor Receptor (FGFR)

Fibroblast growth factor receptor (FGFR) and its associated pathway are important
in cell cycle progression, survival, and proliferation and can activate RAS and
MAPK signaling cascades. FGFR mutations have been detected in 3–19% of
non-small-cell lung cancer cases. These aberrations are mostly gene amplifications
as well as nucleotide sequence alterations. FGFR inhibitors are mostly still inves-
tigational and their clinical significance remains to be seen [175–178].

1.12 Conclusions

In summary, the treatment of the lung cancer has advanced rapidly with the
emergence of targeted therapy, immunotherapy, biomarker-based treatments, and
availability of new clinical trials. Precision medicine may become increasingly
important in the future of lung cancer treatment. Currently, testing for PD-L1
expression levels, EGFR mutations, ALK and ROS1 translocations are essential in
selecting the best therapy for lung cancer patients, especially those with lung
adenocarcinoma, large-cell histology, and non-small-cell lung cancer. Those tests
can also be extended to patients who are never smokers or light smokers with
squamous cell histology. Furthermore, broad genomic profiling to identify molec-
ular alterations such as HER2 insertions, BRAF mutations, MET, TRK and RET
alterations can help to identify investigational targeted agents that are in clinical
trials.
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For patients who are EGFR-positive, EGFR TKIs remain standard of care in the
first-line metastatic setting. Patients with a ROS1 fusions should consider crizotinib
as the initial treatment. For patients with ALK mutations, recent trials have shown
that the next-generation ALK inhibitor such as alectinib may be superior to
crizotinib in the first-line setting. Patients whose tumors have high PD-L1
expression (� 50%) should receive pembrolizumab as the first-line therapy.
Ongoing clinical trials are evaluating the benefits of combining immunotherapy or
targeted therapy with chemotherapy. Patients whose tumors harbor other mutations
should be encouraged to participate in clinical trials for corresponding targeted
agents.
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2.1 Introduction

Breast cancer is a very heterogeneous disease; it has different molecular subtypes
with distinct clinical implications. Inter-tumor heterogeneity refers to molecular
differences in the tumors among different patients. Intra-tumor (spatial) hetero-
geneity refers to the difference within a single tumor mass, and temporal hetero-
geneity refers to the changes over time during tumor growth and under treatment
pressure in an individual patient [1]. The overarching aim of precision medicine is
to decipher and target this heterogeneity allowing physicians to tailor effective
treatments based on the precise molecular makeup of a tumor.

In 2000, Perou et al. described the four basic molecular subtypes of breast
cancer: Luminal A, Luminal B, HER2 enriched, and basal-like (Table 2.1) [2].
There are important biological differences that allowed the clustering of breast
cancers into Luminal A or Luminal B subtypes, despite both of them being defined
by expression of hormone-regulated pathways. For example, Luminal B cancers are
often associated with higher expression of proliferation-related and HER2 signaling
pathway genes. The basal-like tumors have higher expression of proliferation-
related genes and of keratins commonly found in the basal layer of the epidermis.
This classification gave us the first glimpse into the complexity that exists within
tumors that share the same anatomic site of origin. This also allowed prognosti-
cation of patient outcomes with different subtypes of breast cancer and the evalu-
ation of specific therapeutic vulnerabilities within these molecular subtypes. The
development of multigene classifiers like the Oncotype Dx 21-gene recurrence
score, the Mammaprint 70-gene signature, and the PAM50-based Prosigna assay
has advanced the adjuvant treatment of breast cancer patients by identifying the
subset of hormone-receptor-positive breast cancer patients that derive little benefit
from adjuvant chemotherapy and can be treated safely with adjuvant endocrine
therapy alone.

Since then, the subclassification of breast cancers has continued to evolve
through the availability of high-throughput next-generation sequencing platforms
and new subgroups have been identified [3]. We have also discovered that tumors
can change longitudinally during treatment resulting in treatment failures and
requiring different therapeutic approaches. There are ongoing trials looking at
molecular mechanisms of resistance at progression and matching therapies to
precisely target the aberration at an individual level.
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Recently, there have been promising advances in the treatment of many solid
tumors through harnessing the patient’s own immune system to recognize and
eliminate established metastatic disease. The immune checkpoint inhibitor pem-
brolizumab is the first immunotherapy agent approved for tumors that share a
common molecular abnormality, i.e., mismatch repair deficiency or microsatellite
instability, irrespective of their site of origin. Though only a small proportion of
breast cancers fall in this category, it has set a new precedence for drug develop-
ment and getting effective therapies to patients in an expeditious manner in this era
of precision medicine.

Herein, we discuss the current applications of precision medicine in breast
cancer and the ongoing research in this field.

2.2 Single-Gene/Pathway Targeting Approaches

It has long been known that greater than two-thirds of all breast cancers express the
estrogen receptor (ER). Abrogation of estrogenic stimulation of breast cancers by
performing an oophorectomy was the earliest example of precision medicine in the
treatment of breast cancer. ER expression in breast cancer is so prevalent that the
first approval of tamoxifen, a selective ER modulator (SERM) in advanced breast
cancer, was based on responses seen in multiple Phase II trials in unselected patient
populations [4, 5]. Subsequently, the benefit of tamoxifen and other SERMs was
shown to be restricted to ER- and/or PR-positive (collectively known as
hormone-receptor-positive) tumors only, so that histological identification of
hormone-receptor expression on breast cancer cells now guides the use of
hormone-receptor-targeted therapies (alternatively known as endocrine therapy)
both in the advanced and early-stage settings. For the treatment of metastatic
hormone-receptor-positive breast cancer, sequential lines of endocrine therapy
incorporating tamoxifen, an aromatase inhibitor (AI), and the selective estrogen
receptor down-regulator (SERD) fulvestrant are currently recommended as single
agents or in combination with other targeted agents such as CDK4/6 inhibitors and
mTOR inhibitors, or with each other [6]. In the early-stage setting, the use of
tamoxifen for at least 5 years has shown a 39 and 31% reduction in the annual odds
of recurrence and death, respectively, for ER-positive tumors [7]. Furthermore, a
meta-analysis comparing 5 years of tamoxifen to 5 years of AIs in postmenopausal
women with early-stage breast cancer demonstrated that AIs were superior to
tamoxifen in terms of 5-year recurrence rate (HR = 0.59) and 10-year breast cancer
mortality (HR = 0.66) rate [7].

By the late 1990s, it was shown that a subset of breast cancers (*15–20%)
overexpress the HER2 protein or have additional copies of the HER2 gene (HER2
amplification), an important regulator of cell proliferation. It was shown that tar-
geting HER2 signaling provides an effective way of inhibiting cell proliferation and
survival in HER2-positive breast cancer cells. Trastuzumab, an antagonistic HER2
monoclonal antibody, emerged as the pivotal agent to be approved for the treatment
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of HER2-positive metastatic breast cancer (mBC) based on improved OS when
combined with standard chemotherapy versus the same chemotherapy alone [8].
This laid the path to the development of subsequent small molecule inhibitors
(lapatinib, neratinib) and monoclonal antibodies (pertuzumab) as well as antibody-
drug conjugates (e.g., TDM1-emtansine) targeting the HER2 pathway. Because
receptor tyrosine kinases like HER2 exert their action through dimerization, per-
tuzumab, another monoclonal antibody, was developed to disrupt HER2 dimer-
ization and resultant activation. Baselga et al. reported a Phase III clinical trial (the
CLEOPATRA trial) that showed that the addition of pertuzumab to
trastuzumab + chemotherapy increased OS for HER2+ mBC patients from 12.4 to
18.5 months with no increase in adverse events (Fig. 2.1) [9]. The combination
therapy with two HER2 targeting antibodies + chemotherapy was approved for the
first-line treatment of HER2-positive mBC later that year. As mentioned above,
trastuzumab has also formed the basis for antibody-drug conjugates (ADCs) like
trastuzumab–emtansine (T-DM1) that targets the delivery of the bound cytotoxic
drug (emtansine) directly to tumor cells with high expression of HER2 (discussed in
more detail later in this chapter).

Until the advent of molecular techniques, ER, PR, and HER2 represented the
only validated targets in mBC with predictive utility for selecting therapies. It
remains perplexing that a large percentage of patients harboring these targets do not
respond to corresponding therapies, because few biomarkers exist that clearly

Fig. 2.1 Mechanism of action of HER2 targeted therapies. Increased expression and activation of
the tyrosine receptor kinase HER2 leads to increased breast cancer cell proliferation as HER2
dimerizes and phosphorylates its downstream targets. HER2-targeted drugs act by: (1) blocking
dimerization (pertuzumab), (2) competitive inhibition and proteolytic degradation (trastuzumab),
(3) competitive inihibition and cytotoxicity (T-DM1), or (4) direct inhibition of HER2 kinase
activity
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differentiate responders from non-responders. Since both de novo (primary) resis-
tance and acquired (secondary) resistance to endocrine and HER2 targeting thera-
pies limit the magnitude and duration of benefit, there is immense interest in
identifying biomarkers predictive of efficacy and resistance [10, 11].

Multiple putative mechanisms of resistance have been elucidated, some of which
have only been identified through the use of next-generation sequencing tech-
nologies. For example, mutations in the gene ESR-1 that encodes the ERa receptor
have recently been uncovered as a cause of secondary endocrine resistance. ESR-1
mutations result in the clonal selection of endocrine-resistant cell populations after
prior treatment with aromatase inhibitors specifically, but not post-tamoxifen
treatment [12, 13]. Tumors harboring ESR1 mutations in patients with prior
treatment with non-steroidal AIs respond less well to subsequent single-agent AI
like exemestane [14, 15]. However, in combination with other agents like CDK4/6
inhibitors, this resistance seems to be at least partially overcome. Thus, it is likely
that other signaling pathways could function in conjunction with ESR1 mutations to
confer therapeutic resistance. These often constitute products of compensatory
changes that are triggered in other parts of the same or related signaling pathways.
These compensatory changes provide an escape mechanism that results in tumor
cell resistance to the targeted therapy. Molecular profiling of tumor tissues can
potentially reveal such genetic alterations or compensatory transcriptional or pro-
teomic changes that confer resistance to a therapy of interest.

2.3 Overcoming Cross Talk and Resistance Mechanisms

To tackle the problem of therapeutic resistance, dual-target inhibition strategies
have been investigated and subsequently successfully applied in the treatment of
hormone-receptor and HER2-positive mBC.

The biggest advance in the treatment of hormone-receptor-positive mBC has
been the incorporation of CDK4/6 inhibitors in combination with endocrine agents
in the first-line treatment and beyond. CDK4 and CDK6 kinases form complexes
with D-type cyclins and promote cell proliferation by hyperphosphorylating the
retinoblastoma (RB) protein leading to inactivation of cell cycle checkpoint and
G1-S cell cycle progression. Alterations in the CDK-RB pathway like loss of
function mutations in the RB gene, amplification of CDK encoding genes like
CCND1 are implicated in endocrine resistance [16]. CDK4/6 inhibitors block the
inactivation of the RB checkpoint and restore cell cycle control in endocrine-
resistant cells. Three CDK4/6 inhibitors are currently approved for treatment of
hormone-receptor-positive metastatic breast cancer. In the first-line setting, palbo-
ciclib, abemaciclib, and ribociclib in combination with an AI improve PFS by
approximately 10 months when compared with an AI alone in postmenopausal
women with very similar efficacy observed for all three agents across the trials (HR:
0.54–0.58) [17–19]. In the second-line setting, CDK4/6 inhibitors in combination
with fulvestrant improve PFS by about 5–7 months in postmenopausal women or
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premenopausal women who get ovarian suppression [20, 21]. Abemaciclib is the
only CDK4/6 inhibitor that is also approved by FDA as a single agent in heavily
pretreated postmenopausal women at a higher dose of 200 mg BID instead of
150 mg BID in combination therapy [22]. Results recently reported from ran-
domized trials that involved the three CDK4/6 inhibitors leading to regulatory
approval are summarized in Table 2.2.

CDK4/6 inhibitors differ in their toxicity profiles. All of them cause some degree
of neutropenia which is manageable with dose and schedule modification and
unlike chemotherapy-induced neutropenia which is not amenable to or requisites
G-CSF support due to daily administration and a short break. Ribociclib is known
to cause elevation of the liver enzymes, and they need to be monitored during
treatment. Prolongation of the QT interval, an electrophysiological sign of potential
ventricular tachyarrhythmia, was also seen in the MONALEESA-2 trial, and EKG
monitoring is recommended during the first 6 weeks of treatment [19]. Abemaciclib
is a more potent inhibitor for CDK4 than for CDK6, and due to this selective
inhibition, diarrhea is the most common adverse event (13% G3) in addition to
lower neutropenia (20–30%) unlike the other CDK4/6 inhibitors (about 60% G3
neutropenia).

With regard to predictive biomarkers for efficacy, the benefit of CDK4/6 inhi-
bitors seems to be similar in all biomarker subgroups evaluated. These include cell
cycle markers evaluated for protein expression by IHC in PALOMA-2 (ER, RB,
p-16, cyclin-D1) [17] or by mRNA levels in the MONALEESA-2 trial (ESR-1,
CDK2, CCNE1, PI3K, MAPK, and cell cycle control genes) [19]. Thus, there is no
additional biomarker at this time that would suggest a lack of benefit from these
agents added to endocrine therapy. Subgroup analyses from these trials and an FDA
analysis by age confirm that all subgroups in pivotal trials benefit from the addition
of CDK4/6 inhibitors and it may not be appropriate to deny these agents to
seemingly unworthy candidates such as the elderly with bone-only metastases.

Aberrant signaling via the PI3K/Akt/mTOR pathway is a common mechanism
by which BC cells attain resistance to endocrine and HER2-targeted therapy [23].
Integrative profiling of tumors from HER2 overexpressing breast cancer patients
showed that the presence of PIK3CA-activating mutations and loss of PTEN
expression inversely correlated with the probability of response to trastuzumab
therapy (p = 0.093 and 0.034, respectively) [24]. Conversely, the presence of
activating PIK3CA mutations did not attenuate the PFS benefit of T-DM1 in a
correlative analysis of the randomized comparison of T-DM1 versus lapatinib plus
capecitabine (EMILIA trial). Thus, targeting these oncogenic mechanisms of
resistance can perhaps provide an opportunity for improving efficacy of trastuzu-
mab and other HER2 inhibitors. These mTOR inhibitors have been explored in
combination therapies in mBC to improve response and extend benefit from
endocrine and HER2-targeting agents in secondary resistance settings. The
BOLERO-2 Phase III trial evaluated the addition of the mTOR inhibitor ever-
olimus to standard endocrine therapy to overcome resistance in the second line or
greater mBC. The addition of everolimus to exemestane more than doubled the PFS
time compared to exemestane alone (median PFS: 10.6 months vs. 4.1 months;
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HR: 0.36; 95% CI: 0.27–0.47; p < 0.001) [25]. The BOLERO-3 trial also showed a
benefit, though more modest, with the addition of everolimus to chemotherapy plus
trastuzumab in previously treated trastuzumab-resistant HER2-positive mBC
(median PFS: 7.0 months vs. 5.78 months; HR: 0.78; 95% CI: 0�65–0�95;
p = 0.0067) [26]. In the first-line HER2-positive mBC setting, however
(BOLERO-1 trial), the PFS for the overall population with everolimus added to
trastuzumab and weekly paclitaxel was not statistically better than the control arm
without everolimus (median PFS: 14.95 months vs. 14.49 months; HR: 0.89; 95%
CI: 0.73–1.08; p = 0.1166). There was a trend toward greater benefit with ever-
olimus in the HR-negative, HER2-positive population, though not statistically
significant (median PFS: 20.27 months vs. 13.08 months; HR = 0.66; 95% CI:
0.48–0.91; p: NS) [27].

The different efficacy signals seen in the first line versus later lines of treatment
with mTOR inhibition added to anti-HER2 treatments may suggest that the
PI3K/mTOR signaling pathway is important in an acquired resistance setting as
opposed to primary resistance. In addition, the functional significance of alterations
in this pathway may be different in the context of different biology of disease, i.e.,
hormone-receptor-negative, HER2-positive disease (HER2-enriched subtype) ver-
sus hormone-receptor-positive, HER2-positive (Luminal B) disease. A joint bio-
marker analysis of the BOLERO-1 and 3 trials showed that patients with tumors
that had PI3K pathway activation (mutations in pathway genes detected by NGS, or
loss of PTEN expression by IHC) derived greater benefit from everolimus than
those without these alterations [28]. Neither of these trials was prospectively
enriched for these tumors however.

In addition to mTOR inhibitors, a variety of inhibitors of the PIK3CA isoforms
(pan-inhibitors or alpha isoform-specific) are also under investigation for the
treatment of endocrine-resistant hormone-receptor-positive mBC. Buparlisib (a pan
PIK3CA inhibitor) was evaluated in combination with fulvestrant in the BELLE-2
trial in patients with prior progression on endocrine therapy. Serious adverse events
occurred in 23% of patients on buparlisib versus 16% in the placebo group [29].
The combination was marginally better than single-agent fulvestrant (median PFS:
6.9 months vs. 5.0 months; HR: 0.78; p < 0.001) but at the cost of increased
toxicity [Grade 3/4 toxicities (buparlisib vs. placebo): hyperglycemia (15% vs.
<1%), increased liver enzymes (18% vs. none), and rash (8% vs. none)], dampening
the enthusiasm for clinical use.

Patients who initially respond to mTOR inhibitors also develop resistance, likely
through compensatory phosphorylation of AKT that occurs through a feedback
loop which can be abrogated by PI3K inhibitors. The BELLE-3 trial evaluated the
efficacy of fulvestrant + the PI3K inhibitor buparlisib in advanced or metastatic ER
+ BC patients previously treated with or currently progressing on mTOR inhibitors.
Despite showing modest benefit in the overall population with regard to prolonged
PFS (3.9 months vs. 1.8 months; HR: 0.67; 95% CI: 0.53–0.84) in the combination
arm, the trial was discontinued due to increased number of adverse events with the
combination including serious adverse events and deaths [30]. In both BELLE-2
and BELLE-3 trials, patients identified to have a PIK3CA mutation either in
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archival tumor tissue or by circulating tumor DNA (ctDNA) showed a more
meaningful difference in PFS with the combination compared to those who were
PIK3CA wild type. The HR for PFS for the combination arm versus single-agent
fulvestrant in the BELLE-2 trial was 0.56 (p < 0.001) for ctDNA PIK3CA mutation
positive and 1.05 (p = 0.642) for the PIK3CA wild subgroup. Similarly, the HR for
the combination was more favorable in the BELLE-3 trial for the PIK3CA
mutation-positive subset. These data, though exploratory, do suggest that perhaps a
real-time biomarker-based selection strategy with ctDNA could result in a better
risk–benefit ratio for these agents allowing them to be integrated into the treatment
of a subset of PIK3CA-mutant hormone-receptor-positive breast cancers.

The Phase III SandPiper trial was recently reported evaluating a combination of
fulvestrant with or without the beta-sparing PI3K inhibitor taselisib in post-
menopausal women with hormone-receptor-positive mBC who had progressed on
an aromatase inhibitor and no more than 1 prior line of chemotherapy [31]. The trial
enrolled two cohorts, one with PIK3CA mutation-positive tumors (archival tissue
for central testing) and another without. Both cohorts were separately randomized
2:1 to taselisib or placebo in combination with fulvestrant. The primary endpoint of
investigator-assessed PFS in the ITT population (PIK3CA-mutant group) was met
with median PFS of 7.4 months versus 5.4 months in the taselisib versus placebo
groups, respectively (HR: 0.70; 95% CI: 0.56–0.89; p = 0.0037). There was no
clear benefit in the PIK3CA wild-type group (HR: 0.69; 95% CI: 0.44–1.08).
Though this trial met its primary endpoint in a biologically defined group, there
were toxicity concerns as with other PI3K inhibitors which will be a barrier to rapid
adoption of this class of drugs in the clinic. Nevertheless, this trial does support in
principle that a biomarker-enrichment strategy for enrollment is feasible and can be
further improved upon perhaps both by better technology like ctDNA for capturing
in real time the tumors that continue to be addicted to an oncogenic driver (over-
coming clonal heterogeneity between primary and recurrent tumors) and drugs with
a more favorable therapeutic index.

These data also provide evidence that due to the dynamic and heterogeneous
nature of cancer cell genomes, transcriptomes, and proteomes, a single snapshot of
the histology or multi-omic profile of a tumor is not indicative of the tumor over time
and may miss populations that may emerge as a result of treatment pressure from a
given targeted therapy. Isolation and interrogation of these treatment-emergent-
mutant subpopulations via improved technology platforms can provide a therapeutic
opportunity for application of precision medicine in the treatment of mBC.

The circulating tumor DNA (ctDNA) analysis is one such platform by which the
mutational status of tumors can be tracked longitudinally for a patient in both
primary and metastatic setting and is increasingly incorporated for correlative
analyses as highlighted above. Chandarlapaty et al. profiled ctDNA from partici-
pants in the BOLERO-2 trial for two specific mutations in the ESR1 gene [13].
They found that 21.1 and 13.3% of patients screened positive for the ESR1
mutations D538G and Y537S, respectively. Both mutations correlated with more
aggressive cancer phenotypes and poor outcomes. Wild-type and D538G ESR1
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patients appeared to respond to everolimus, but no clear benefit was observed for
Y537S patients.

2.4 Precision Medicine Applications of Multi-omic
Profiling

The advent and availability of DNA sequencing, mRNA micro-arrays, NGS, and an
array of proteomics assays have allowed profiling of large numbers of tumors based
on mutational profiles and aberrant gene and protein expression. Profiling can be
performed by genomic sequencing, transcriptomic profiling, or via combinatorial
multi-omic platforms. Genomic profiling is primarily performed on tumor cells to
uncover somatic mutations (single-nucleotide variants, indels), copy-number
changes, or oncogenic fusions. Transcriptomic and proteomic profiling including
phospho-protein profiling, on the other hand, provide information on the pathway
activation status, providing another avenue for targeted therapies. A large amount
of transcriptome data generated by large-scale research efforts has allowed for
non-biased segregation of breast cancers into molecular subtypes that appear to
loosely but not directly mirror histological characterization [2]. The subtypes that
have emerged appear to provide some opportunities for precision medicine and
targeted therapies (Table 2.1).

Further analysis of large populations of breast cancer tissues revealed additional
complexity and molecular subgroups. For instance, a meta-analysis of data obtained
by the METABRIC (Molecular Taxonomy of Breast Cancer International Con-
sortium) revealed 10 different molecularly defined subgroups that correlated with
different prognoses [3]. These studies highlight the great potential but also the
tremendous complexity for precision medicine including difficulties in the accu-
mulation of sufficient patient numbers to test select treatments in a specific
subgroup.

While whole-genome sequencing is an excellent tool for discovery research that
aims to find novel tumor-associated genes that identify a specific subgroup or offer
new drug targets for precision medicine, it remains expensive and time-consuming
for widespread clinical application outside of clinical trials. Because most action-
able mutations can be determined from a smaller-scale sampling of the tumor, a
number of commercially developed assays sequence a smaller number of the most
relevant genomic alterations for diagnostic purposes. The oncogenic mutations for
breast cancer can be divided into recurrent mutations (1–10% frequency) in 10–20
relevant genes and rare mutations (0–1% frequency in � 100 genes) underscoring
the difficulty in developing targeted therapies for such a molecularly heterogeneous
disease.

By its definition, precision medicine aims to precisely match each individual’s
unique genomic alterations to an effective therapy. Novel precision medicine trial
designs such as basket and umbrella trials can help address some of the inherent
difficulties in accruing sufficiently large numbers within any molecular subgroup to
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evaluate a matched therapy of choice. Basket trial designs are agnostic to site of
origin of the tumor and seek to cluster and treat tumors with a therapy that targets a
common biologic variable such as an activating oncogenic mutation, copy-number
variation or fusion. Basket trials can be designed for one therapeutic agent of choice
or can test multiple simultaneous targets and therapies. The NCI-MATCH and
ASCO-sponsored TAPUR trials (Molecular Analysis for Therapy Choice) are
examples of basket trials. The MATCH trial is designed to screen 6000 patients to
identify unique targets of interest in individual patients and assign patients, irre-
spective of histology, to a pre-selected therapeutic against that target. In this
large-scale effort, patients’ tumors are biopsied and profiled by a standardized panel
including NGS, IHC, and other methods. Patients appropriate for a specific arm are
identified by standardized informatics tools generated by the NCI Center for
Biomedical Informatics and Information Technology (CBIIT). Treatment is initi-
ated with the targeted therapy specified for the patient’s arm. Once disease pro-
gresses after treatment the tumor is again biopsied for profiling. If another
actionable mutation is detected, another iteration of treatment is initiated, this time
with the new targeted therapy [32]. As many as 40 different therapeutic agents/arms
with 35 patients each are being evaluated simultaneously in this trial. Promising
results of this approach have been presented for a few of the arms, like the efficacy
of the immune checkpoint inhibitor nivolumab in microsatellite instability high
(MSI high) non-colorectal tumors, while pembrolizumab is already approved for
this indication [33]. In contrast, umbrella trial designs aim to dive deeply into a
single tumor type or histologic organ of origin and segregate tumors based on
inter-tumor heterogeneity. By doing this, treatment is individualized for tumors
based on their unique molecular thumbprint so that individual patients with breast
cancer, for example, can expect to receive different treatments despite a common
histology. Such a design leads to the possibility of adaptive trials, which allow for
changes in randomization ratios and rearrangement of treatment arms based on data
obtained in the initial phases of the trial. A few of these umbrella designs have been
conducted and reported by different groups that included variable numbers of
patients with metastatic breast cancer (Table 2.3) that demonstrate that this
approach is feasible.

The largest effort of its kind in breast cancer is in the neoadjuvant setting,
whereby the I-SPY2 trial is a platform for testing up to five novel agents in parallel
in combination with standard chemotherapy for locally advanced breast cancers that
are all molecularly typed upon study entry. The trial has an adaptive randomization
design, whereby agents can be quickly evaluated for efficacy with a short-term
endpoint of pathologic complete remission (pCR) utilizing pretest predictors of
efficacy. An agent that crosses this predetermined threshold of efficacy can then
“graduate on” with a high probability of success in a given molecular subtype in a
future randomized study. One of the most recent agents to graduate this initial test
of feasibility is pembrolizumab in the triple-negative breast cancer (TNBC) subset.
A large randomized neoadjuvant/adjuvant trial of pembrolizumab in TNBC is now
underway (KEYNOTE-522).
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The molecular profiling utilized in various studies ranges from immunohisto-
chemistry to high-throughput multigene sequencing. Regardless of the platform
utilized or cancer type investigated, there are some common limitations that emerge
from the results of these trials as discussed above. The first and perhaps most
important one is that less than 1 in 5 patients whose tumors are profiled are actually
matched to a therapeutic agent despite a quarter to one-third of them having an
identifiable genomic alteration. Roughly half of that number (approximately 10%)
of patients is able to be treated with a targeted drug currently on the market or on a
clinical trial seeking a particular genomic alteration. Factors influencing this
low “match” rate include lack of specific drugs to target the alteration, barriers
to clinical trial eligibility, payers who are often unwilling to pay for off-label
uses of expensive cancers therapies, etc. Well-designed trials with strong

Table 2.3 Reported multi-omic profiling trials with breast cancer cohorts

Trial (or
location)

Disease Technology N screened Matched
therapy

Outcome

SAFIR01 [82] Metastatic
breast cancer

CGH/Sanger 423 55 (13%) 30% OR and/or
SD > 4 months

MOSCATO 01
[83]

Metastatic
solid tumors

CGH/NGS 843 199 (23%) 11% OR, longer
PFS in 33%
versus previous

MOSCATO 02
(NCT01566019)

Metastatic
solid tumors

CGH/NGS 1050
(estimated)

TBA PFS

MDACC [84] Metastatic
breast and crc

Panel of 11,
46, or 50
gene
hotspots
(MS or
NGS)

2000 11% of
genomically
matched
trials, 15% on
other trials

Not reported

Princess
Margaret [85]

Metastatic
breast cancer
with good
performance
status

Panel of 48
genes

440
genotyped

15% matched
9%
non-matched

Time on
treatment 3.6
versus
3.8 months
RR = 16%
versus 10%

T-Gen [86] Refractory
metastatic
cancer

IHC, FISH,
micorarray

86 66 (76%) 27% PFS
ratio* � 1.3

SHIVA [87] Refractory
metastatic
cancer

NGS 741 195 (26%) Targeted therapy
did not improve
PFS (2.3 months
vs. 2 months)

Sideout 1 [88] Refractory
metastatic
breast cancer

Multi-omic
molecular
profiling

28 25 (89%) Met objective
44% had
GMI** � 1.3

*PFS ratio: PFS on molecular profiling-based therapy/PFS on most recent therapy
** GMI: same definition as the PFS ratio
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academic/pharmaceutical partnerships are necessary to overcome some of these
barriers. An example of a “just-in-time” approach to improve access to clinical trial
agents for patients across different clinical settings is illustrated by the Signature
trial. Patients are enrolled at any research-experienced site based only on the
presence of an actionable mutation, and the protocol is activated at that site once a
suitable patient is pre-screened as potentially eligible to receive the trial treatment,
with a central IRB and a non-negotiable contract resulting in a 15 d timeline.

Big data initiatives like CancerLinq (https://cancerlinq.org) and TAPUR (Tar-
geted Agent and Profiling Utilization Registry) are additional approaches to collect
and analyze real-world data in the practice settings that can expand the reach of
precision medicine for patients with tumor types and genetic changes that would not
otherwise be feasible to be tested in a clinical trial design.

With these large-scale molecular profiling efforts, tumor heterogeneity, both
inter-tumor and intra-tumor, has emerged as another cause for lack of matched
therapies or only modest benefit from a given matched therapy for the entire
treatment group at an individual trial level. Furthermore, clonal evolution and
change of putative drivers between the primary and metastatic sites of disease can
lead to lack of response or emergence of treatment resistance. Besides the excep-
tional responders (defined by the NCI as patients who have a unique response to
treatments that are not effective for most other patients) for the 10–25% of overall
patients who are initially shown to have a response to personally matched therapies,
emergence of resistance in the short term remains a formidable challenge.

A recent meta-analysis of reported Phase II clinical trials across multiple tumor
types (570 studies; 32,149 patients), however, did show that a personalized therapy
approach compared with a non-personalized approach demonstrated an overall
higher response rate (31% vs. 10.5%, p < 0.001), prolonged median progression-
free survival (5.9 months vs. 2.7 months, p < 0.001), and prolonged overall sur-
vival (13.7 months vs. 8.9 months, p < 0.001). Further inspection of the data
revealed that personalized therapy arms based on genomic markers outperformed
those based on protein biomarkers [34].

2.5 Targeting DNA Repair Deficiencies in Breast Cancer

The promise of precision medicine lies in the rapid translation of scientific dis-
coveries into better treatment options for patients and tailoring therapy to those
most likely to benefit from them. In breast cancer, this promise has been realized for
patients with germline mutations in the BRCA1/2 genes (hereditary breast cancer)
with the recent approval of the PARP inhibitor olaparib for the treatment of mBC in
these patients. Olaparib and two other PARP inhibitors (rucaparib and niraparib) are
also approved for the treatment of recurrent ovarian cancer in patients with BRCA
mutations. The biological basis of this investigation and the trials leading to the
approvals are briefly discussed in this section.
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2.5.1 PARP Inhibitors

Like all dividing cells, cancer cells experience numerous “nicks” or single-strand
breaks in the course of DNA replication. PARP (Poly(ADP-ribose) polymerase) 1
and 2 are zinc finger-binding proteins that are activated in response to DNA damage
and bind and repair single-strand breaks through the base excision repair program.
If left unrepaired, these single-strand breaks become double-strand breaks and
threaten to induce apoptosis. PARP-inhibiting drugs make cancer cells, particularly
breast cancer cells with defects in the double-strand break repair protein BRCA,
more susceptible to the cytotoxic effects of DNA-damaging drugs or radiation
(Fig. 2.2).

There are two major forms of DNA damage: single-strand breaks (SSBs) and
double-strand breaks (DSBs). For the SSBs, the major forms of DNA repair are
mismatch repair, nucleotide excision repair, base excision repair, and translesional

Fig. 2.2 Platinum agents act by introducing single-strand breaks into the DNA. PARP enzymes
repair breaks that may accumulate. In the absence of BRCA double-strand break repair. PARP
inhibitors can lead to cancer cell death
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synthesis. For the DSBs, the two major forms of repair are nonhomologous
end-joining repair and homologous recombination repair [35].

BRCA1 and BRCA2 are tumor suppressor genes that are involved in homolo-
gous recombination repair. Germline mutations in these genes lead to an increased
risk of breast cancer. Poly(ADP-ribose) polymerases (PARPs) are nuclear enzymes
that are involved in DNA repair, specifically base excision repair. When there is
damage to the DNA causing a SSB, the PARP enzyme is activated and repairs the
site of the SSB. In the presence of a PARP inhibitor, this repair mechanism is
jeopardized. This leads to an increased amount of SSB and stalling of the repli-
cation fork leading to DSB. If the cell also has a homologous recombination defect
like BRCA-mutant cancers do, the DSBs will accumulate and lead to cell death.
This is the concept of synthetic lethality [36]. This susceptibility to DNA-damaging
agents has led to clinical trials to explore PARP inhibitors in patients with BRCA
mutations.

Olaparib
Olaparib is a PARP inhibitor that is approved for the treatment of ovarian and breast
cancer with germline mutations in the BRCA gene. The Olympiad trial was the
registration Phase III trial that leads to its recent approval for the treatment of mBC
in patients with BRCA mutations. This was a randomized trial for patients with
mBC and germline BRCA mutations who had received less than two previous
chemotherapy regimens for their metastatic disease. A total of 302 patients were
randomized (2:1) to either monotherapy with olaparib at a dose of 300 mg twice a
day or standard therapy with single-agent chemotherapy of physician’s choice. The
primary endpoint was PFS. About a quarter of the patients in both arms had
received prior platinum therapy. The median PFS was 7 months for olaparib and
4.2 months for standard therapy (HR: 0.58; 95% CI: 0.43–0.80; p < 0.001). The
benefit of olaparib was noted across all subgroups including BRCA1 and BRCA2
mutation, hormone-receptor status, or prior platinum exposure. There was no dif-
ference in overall survival, but it is to too early to assess. The response rate was
more than double in the olaparib arm compared to the chemotherapy arm (60% vs.
29%). The side-effect profile and the overall toxicity rate favored the olaparib
group. There was more nausea, anemia, and fatigue in the olaparib group, but lower
rates of neutropenia and overall grade � 3 adverse events (AEs) [37]. This trial is
noteworthy for having led to the approval of the first oral targeted therapy for a
subset of TNBC patients, i.e., those with BRCA mutations.
Talazoparib
Talazoparib is a dual-mechanism PARP inhibitor and PARP trapper that also
reported positive data recently in the treatment of breast cancer. The EMBRACA
trial is a Phase III trial that randomized (2:1) 431 patients with mBC and germline
BRCA mutations who had received � 3 prior lines of chemotherapy to either
talazoparib (1 mg daily) or standard single-agent chemotherapy. The median PFS
favored the talazoparib group (8.6 months vs. 5.6 months) with a HR of 0.54 (95%
CI: 0.41–0.71; p < 0.0001). Response rates were nearly double of the chemother-
apy group as well. Interestingly, a subset analysis showed that patients with central
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nervous metastasis had a more profound benefit (HR: 0.32; 95% CI: 0.15–0.88), but
this finding is considered exploratory and needs further investigation. Compared to
the control arm, anemia, requiring transfusion support, was more prominent with
talazoparib, but the rate of neutropenia and grade 3 neutropenia was lower.
Global QOL scores were significantly better in patients randomized to talazoparib
compared to chemotherapy [38]. An NDA for talazoparib for the treatment of
BRCA mutation-positive mBC has been submitted. Other PARP inhibitors like
veliparib are also being evaluated in this setting. A few of the noteworthy Phase II
and III ongoing trials are listed in Table 2.4.

2.5.2 Targeting BRCA-like Tumors

Besides breast cancers with germline BRCA mutations, other breast cancers have
been noted to have BRCA-like functional abnormalities. This can be due to somatic
BRCA mutations, BRCA gene promoter methylation or mutations in other genes
that are important in the homologous recombination pathway. BRCAness is a term
used to describe tumors that behave similar to BRCA-mutated tumors, such that
they have high responses to platinum and other DNA-damaging drugs like topoi-
somerase inhibitors and/or have a specific gene expression profile [15, 39]. Patients
with homologous recombination deficiency (HRD) theoretically have good
response to platinum agents in particular [40]. A HRD score has been put forth that
involves measuring loss of heterozygosity, large-scale state transitions, and
telomeric allelic imbalance in several genes involved in the homologous recom-
bination pathway. New therapeutic options targeting the vulnerability of the tumors
with ineffective DSB repair are under evaluation with many ongoing studies
including a broad set of tumors defined by their “BRCAness”.

The HRD score has been evaluated retrospectively in triple-negative breast
cancer patients as a predictive marker for response to DNA-damaging drugs like

Table 2.4 Select Phase II/III trials of PARP inhibitors in breast cancer

NCT Phase Design Patient population

NCT01905592 III Physician choice versus niraparib
(BRAVO)

BRCA mutation, HER2−

NCT02163694 III Carboplatin/Paclitaxel ± veliparib
(BROCADE-3)

BRCA mutation, HER2−

NCT02595905 II Cisplatin ± veliparib (SWOG
1416)

Triple-negative breast
cancer and/or
BRCA-mutated

NCT02032823 III Adjuvant: olympia: olaparib versus
placebo for 12 months

BRCA-mutated
Post-adjuvant: high-risk
Post-neoadjuvant: with
residual disease
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platinum chemotherapy. Nearly half of TNBC tumors can have the “BRCAness”
genotype. The TNT trial is a Phase III trial that randomized 376 patients with
locally advanced or metastatic triple-negative breast cancer to either six cycles of
docetaxel or six cycles of carboplatin. There was no difference in progression-free
survival between treatment arms except for patients with BRCA 1 or BRCA 2
mutations where carboplatin was superior to docetaxel. The authors also studied
other biomarkers of platinum sensitivity including BRCA1 promoter methylation,
and high HRD score, none of which were shown to be predictive of response to
carboplatin. In fact, patients without germline BRCA1/2 mutations faired better
with docetaxel compared to carboplatin [41]. This result contrasts the findings of
Telli et al. that showed that a high HRD predicts response to platinum drugs in the
neoadjuvant setting [40]. Though these data are intriguing, HRD score requires
further validation as a precision medicine tool before it can be routinely employed
in clinical practice.

2.6 Precision in Chemotherapy Delivery: Antibody-Drug
Conjugates (ADCs)

ADCs are an excellent tool for precision medicine. Taking advantage of known cell
surface proteins overexpressed in a particular cancer of interest, ADCs consist of a
monoclonal antibody (Mab) directed against that antigen, a linker region, and the
payload, typically a cytotoxic drug (Fig. 2.3). After binding to the cell surface
antigen, the ADC is endocytosed. At that time, some linkers are cleaved due to the
intracellular conditions of the cell of interest, typically the tumor cell, and the active

Fig. 2.3 Mechanism of action of ADCs (example T-DM1). (1) Targeting antibody binds cell
surface target (HER2). (2) Complex is internalized. (3) Linker is cleaved, releasing payload to
exert anti-tumor effect
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drug is released others such as T-DM1 employ a non-cleavable linker region and
are only released after the Mab is degraded in the lysosome. ADCs allow a large
dose of cytotoxic drug to be delivered specifically to the tumor cell, increasing
tumor cell death and reducing the negative effects on other cells caused by systemic
administration (though some nonspecific uptake in other tissues can be seen). It
should be noted that, while the original cell surface antigen selected for targeting
should be enriched on the target cell, the antibody chosen to bind it need not have
clinical efficacy on its own.

The earliest ADCs developed for breast cancer focused on HER2+ tumors, using
the well-established HER2+ antagonistic antibody trastuzumab. In 2014, trastuzu-
mab–emtansine (abbreviated T-DM1) became the first FDA-approved ADC for the
treatment of metastatic HER2+ breast cancer; the ADC consists of trastuzumab
conjugated to emtansine, an anti-microtubule drug too toxic for any systemic
administration. Encouragingly, adverse events to T-DM1 (primarily thrombocy-
topenia and mild hepatotoxicity) were better tolerated than control treatment. The
Phase III EMILIA trial showed that T-DM1 increased PFS in previously treated
metastatic HER2 + breast cancer by 50% (median PFS: 9.6 months vs. 6.4 months;
HR = 0.65; 95% CI: 0.55–0.77; p < 0.001) over the standard control treatment arm
(capecitabine + lapatinib) [42] and led to FDA approval. In the first-line metastatic
setting, however, the Phase III MARIANNE trial did not demonstrate superiority
of T-DM1 alone or T-DM1 plus pertuzumab over standard trastuzumab plus taxane,
though the safety profile was more favorable with T-DM1 and the PFS in both
T-DM1 arms was non-inferior to the control arm. Thus, T-DM1 could be a rea-
sonable alternative first-line regimen in select patients with HER2-positive mBC
[43].

Since that time trials have been conducted for a number of other ADCs in breast
cancer, including a number that target TNBC (Table 2.5). Some, such as saci-
tuzumab govitecan and glembatumumab vedotin, have entered late phase clinical
trials. In a Phase III trial (NCT01631552) of heavily treated metastatic TNBC
(mTNBC) patients, an objective response rate of 34% was seen [44]. This drug is
now being evaluated in the Phase III ASCENT trial in which patients with mTNBC
with � 2 lines of treatment will be randomized 2:1 to sacituzumab govitecan or
chemotherapy of physicians’ choice. (NCT02574455). Glembatumumab vedotin
was evaluated in the randomized Phase II METRIC trial in GPNMB-expressing
TNBC patients with capecitabine as the control arm. This trial unfortunately did not
meet its primary endpoint of PFS or ORR compared to capecitabine, and further
development has been halted by the manufacturer.

Additional HER2-targeted ADCs seek to deliver either a different, more effective
payload including DNA-damaging agents; others have modified targeting strategies
including a separate epitope on HER2; and some seek to improve both aspects for
improved therapeutic efficacy [45]. DS-8201 {trastuzumab-deruxtecan (a
topoisomerase-1 inhibitor)} and SYD985 {trastuzumab-duocarmycin (an alkylating
agent)} are novel HER2-binding ADCs that have completed Phase 1 testing and
demonstrated encouraging activity in HER2-pretreated and HER2 low mBC.
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2.7 Tumor Micro-Environment Targeting Approaches:
Harnessing the Immune System

That the immune responses of the host to cancer cells can augment the anticancer
effect of cancer therapeutics has been known in HER2-positive breast cancer since
the development of trastuzumab that employs ADCC (antibody-dependent cellular
cytotoxicity) as one of its mechanism of action. In recent years, novel
immunotherapeutic agents called immune checkpoint inhibitors have been devel-
oped and been very successful in the treatment of solid tumors like melanoma,
RCC, and NSCLC. Herein, we will discuss the emerging data and ongoing
evaluation of checkpoint inhibitors in breast cancer (see Fig. 2.4).

2.7.1 Immune Checkpoint Inhibitors

2.7.1.1 PDL-1/PD-1 Inhibitors
The programmed death ligand 1 (PDL-1) and its corresponding receptor on T cells
(PD-1) allow tumors to escape immune surveillance. By inhibiting this checkpoint
pathway, T-cell-mediated immunity is enhanced [46]. Checkpoint inhibitors have
made tremendous strides in the treatment of metastatic melanoma, NSCLC, bladder
cancer, RCC and MSI high tumors. Several of these are also being investigated as
single agents or on various combinations for the treatment of breast cancer.

Pembrolizumab
Pembrolizumab is a humanized antibody that inhibits PD-1 and has some early data
of activity in breast cancer:

Keynote-012: This was a multicenter phase 1b study of single-agent pem-
brolizumab in patients with advanced TNBC, head and neck cancer, urothelial
cancer, and gastric cancer. Patients had to have PD-L1 expression (expression in
stroma or � 1% tumor cell expression by immunohistochemistry). Thirty-two
patients with TNBC were enrolled. The dose was 10 mg/kg of pembrolizumab
administered intravenously every 2 weeks. Patients received a median of 5 doses
(range 1–36 doses). The reported response rate was 18.5%. The toxicity profile was
similar to that observed with pembrolizumab in other tumors. The authors con-
cluded that pembrolizumab had an acceptable safety profile and clinical activity in
patients with TNBC warranting additional investigation [47].

Keynote-086: This is a multicohort single-arm Phase II study of pembrolizumab
monotherapy in mTNBC. Part one: Cohort A included patients with at least one
systemic treatment for mBC. PD-L1 expression was not required; Cohort B
included patients with no prior systemic therapy for mBC and with positive PD-L1
expression (tumor PDL-1 combined positive score [CPS] � 1). Part two was an
expansion of cohort A with the exception that enrolled patients had to have strong
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PD-L1 expression. Pembrolizumab was given at a dose of 200 mg IV every
3 weeks for up to 24 months. Results of cohorts A and B were presented in 2017:

Cohort A: A total of 170 patients were enrolled. Sixty percent of the screened
PD-L1 patients had PD-L1-positive tumors. The overall response rate was 5%
regardless of PD-L1 expression. The median duration of response was 6.3 months.
Sixty-three percent of the responders had long responses with no progression at data
cutoff. The safety profile was manageable [48].

Cohort B: A higher response rate was seen in patients with untreated mTNBC in
cohort B. Of the 128 patients that had tumor PDL-1 � 1, 84 patients met eligibility
criteria and were enrolled. The overall response rate was 23% (3 CRs and 16 PRs;

Fig. 2.4 List of the major steps of the tumor immune response and the immunotherapy treatments
(and treatment combinations) that act on each step
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95% CI: 15–33). The median duration of response was 8.4 months with several
durable responses, and a 6-month PFS and OS of 26 and 83%, respectively [49].

Keynote-028: This is a multicohort, Phase Ib study that evaluates the efficacy and
safety of pembrolizumab in patients with advanced biomarker-positive tumors of
different histologies (CPS � 1). The cohort of estrogen receptor-positive,
HER2-negative breast cancer included 261 patients who were screened for PDL-1
expression. The results from 25 patients who were PDL-1 positive and met all
eligibility criteria to be finally enrolled in this cohort were recently published [50].
This was a very heavily treated group with a median of nine prior lines of therapy.
The ORR was 12% (three patients had a partial response) with a clinical benefit rate
of 20%. As in other trials, the patients who responded had a durable response with a
median duration of response of 12 months.

Pembrolizumab/Eribulin
Enhance1/Keynote-150. A Phase Ib/II trial that enrolled patients with TNBC who
had been previously treated with two or less lines of chemotherapy established the
recommended Phase II dose as 1.4 mg/m2 of eribulin on days 1, 8 plus 200 mg of
pembrolizumab on Day 1 of a 21 d cycle (Tolaney, SABC 2016 Abstract P5-15-02)
[51]. A total of 104 patients were enrolled in the Phase II portion, and the data from
82 evaluable patients were reported in 2017 [49]. The ORR was 25.5%. The
combination had manageable toxicities consistent with the individual agent’s safety
profile; the most common were fatigue, nausea, and neuropathy [49].
Atezolizumab
Atezolizumab is a humanized antibody that inhibits PD-L1 and has shown
encouraging activity in patients with triple-negative breast cancer.

A Phase I trial evaluated the activity of single-agent atezolizumab in 115 patients
with metastatic triple-negative breast cancer who were heavily pretreated. They
received 15 or 20 mg/kg or 1200 mg of atezolizumab intravenously every 3 weeks
for up to 16 cycles. The overall response rate was 10%. Here again, the patients
who responded had a prolonged disease-free survival (21.1 months). Higher
response rate seemed to be associated with higher levels of tumor-infiltrating
lymphocytes, PD-L1 expression, and CD8 T cells [52].

Atezolizumab was evaluated in combination with nab-paclitaxel in a Phase Ib
trial of TNBC patients who had received � 2 lines of therapy for metastatic dis-
ease. The ORR for this combination among the 24 patients evaluable for efficacy
was 42%, and 67% among patients that received this regimen as first line, with 8%
of patients having a complete response [48]. This was the first trial in TNBC
patients to report the efficacy of combination chemotherapy + checkpoint inhibitor
therapy and led to the development of Phase III trials of the combination in the
first-line metastatic (Impassion130) and neoadjuvant settings (Impassion031).
Results from these trials are highly anticipated to see if a chemotherapy–checkpoint
combination therapy is the ideal way to incorporate checkpoint inhibitor therapy in
the treatment paradigm for TNBC.
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Avelumab
Avelumab is another PD-L1 antibody that has entered clinical investigation in
mBC.

JAVELIN Solid Tumor Study: This is a Phase I trial in patients with advanced
solid malignancies. A total of 168 heavily pretreated patients with mBC including
58 patients with TNBC have been enrolled. The ORR was 3% in the whole group,
and 5.5% in the TNBC subset. Exploratory analysis showed a trend toward higher
response in patients with PD-L1-positive tumors (16.7% vs. 1.6%) and patients
with triple-negative breast cancer (22% vs. 2.6%) [53].

2.7.1.2 Other Molecules
Taking the lead from other tumor types like NSCLC and melanoma, other mole-
cules that stimulate T-cell immunity are currently being studied in breast cancer as
well, such as antibodies that target the T-cell immunoglobulin and immunoreceptor
tyrosine-based inhibitory motif (TIGIT), antibodies that target the T-cell costimu-
latory protein (ICOS), antibodies that target tumor necrosis factor superfamily
member 4 (OX40), antibodies against the lymphocyte activation gene-3 (LAG3),
etc. [54].

2.7.2 Improving Immune Checkpoint Inhibitor Activity

As highlighted by the data from various trials and in different breast cancer his-
tologic types, monotherapy in breast cancer is only effective in a small subset of
patients, especially in pretreated patients. For this reason, several strategies are
being developed to improve the activity of checkpoint inhibitors. In general, breast
cancer immune phenotypes range from poorly immunogenic to an inflamed
immunogenic type. Approximately one-third of basal-like and HER2-enriched
tumors in the TCGA database were noted to express a favorable immune tumor
phenotype based on gene expression data, whereas only 5 and 10% of Luminal A
and B tumors, respectively, were represented in the favorable group [55]. Consis-
tent with other studies that have shown that a higher proportion of tumor-infiltrating
lymphocytes are associated with better prognosis in breast cancer [16], this study
also showed improved survival for patients with favorable immune profiles. Thus,
there is ongoing enthusiasm for identifying those breast cancers that are inherently
more likely to respond to immunotherapy as well as approaches to make less
immunogenic tumors more immunogenic to increase their likelihood of response
(convert “cold” tumors to “hot” ones).

One of the strategies is to combine checkpoint inhibitors with agents that can
generate and deliver tumor-associated antigens (neoantigens) to antigen-presenting
cells.

The use of CDK4/6 inhibitors in combination with PD-1 inhibitors is based on
this principle. CDK4/6 inhibitors augment antigen presentation. The combination of
pembrolizumab with abemaciclib (JPCE trial) is currently being studied in a Phase
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Ib parallel assignment study. Preclinical data showed that abemaciclib increases
T-cell infiltration in tumors and could enhance the activity of pembrolizumab. In
this trial, patients with non-small cell lung cancer and hormone-receptor-positive
breast cancer were enrolled. Twenty-eight patients had ER+ mBC. The ORR was
14.3% (at a 16-week analysis). The combination had an acceptable safety profile
[56]. Another trial is testing the combination of ribociclib with PDR001
(an anti-PD-1 agent) in patients with hormone-receptor-positive breast cancer or
ovarian cancer (NCT03294694).

Another trial that recently reported encouraging data in TNBC patients is
looking at a PARP inhibitor (niraparib) in combination with pembrolizumab
(TOPACIO/Keynote 162 trial). Among 54 enrolled patients with TNBC who had
received a median of 1 prior treatment, an ORR of 29% (3 CRs and 10 PRs) and a
disease control rate (DCR) of 49% were reported. The ORR and DCR in BRCA
mutation-positive patients were higher at 67 and 75%, respectively. Prior platinum
exposure or PDL-1 status did not impact efficacy to the combination. This trial
offers a possible strategy to not only improve checkpoint inhibitor therapy efficacy
but also potentially overcome platinum and PARP resistance in TNBC patients
[57].

Combining different immune checkpoint inhibitors together like CTLA-4 inhi-
bitors with a PD-1 inhibitor can augment tumor T-cell trafficking and improve
efficacy. Tremelimumab in combination with durvalumab in patients with triple-
negative or hormone-receptor +/HER2− breast cancer was studied in a single-arm
pilot study [58]. A total of 18 patients were accrued with a 17% response rate,
limited to the TNBC patients. A higher tumor mutational load was associated with
response to therapy.

Other ways to augment immunogeneity that are underway are to combine
checkpoint inhibitors with other drugs such as histone deacetylase (HDAC)
inhibitors, radiotherapy, or cryotherapy to enhance the release of tumor neoantigens
[54].

2.8 Adjuvant or Early Breast Cancer Setting

Precision medicine has also impacted treatment in patients with early-stage breast
cancer. In the past, most patients with invasive breast cancer were advised adjuvant
chemotherapy regardless of hormone receptor, nodal or menopausal status [59]. In
2005, the Early Breast Cancer Trialists Collaborative Group (EBCTCG) meta-
analysis demonstrated that the proportional and absolute benefit from poly-
chemotherapy was higher in ER-negative disease and in pre-menopausal women as
compared to postmenopausal ER-positive disease [7]. There were still no good risk
stratification tools beyond clinic-pathologic factors like age, tumor size, nodal
status, and grade that could identify ER/PR-positive patients who were less likely to
benefit from adjuvant chemotherapy in addition to adjuvant endocrine therapy.
Over the past 10–15 years, multiple genomic predictors, mostly prognostic but
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some predictive, have been developed to guide the use of chemotherapy in
early-stage ER/PR-positive, HER2-negative breast cancer.

2.8.1 Molecular Profiling

The use of multigene molecular signatures has allowed us to predict the risk of
distant recurrence in patients with ER-positive breast cancer and predict to some
extent which patients are unlikely to benefit from adjuvant chemotherapy.

The use of a 21-gene expression assay (Oncotype DX) uses reverse transcrip-
tase–polymerase chain reaction (RT-PCR) to quantify gene expression in
paraffin-embedded tumor tissue. Based on the expression of the genes (16
cancer-related and 5-reference genes), a recurrence score (RS) is calculated. The
patients are then categorized into three groups: low risk (RS < 18), intermediate
(RS: 18–30), and high risk (RS: >30) [60]. The signature was validated for its
prognostic and predictive role by applying the signature retrospectively to
prospectively collected outcomes data from the NSABPB-20 trial. Patients who had
a high RS had the greatest absolute benefit from chemotherapy (increase in 10-year
distant recurrence-free survival of 27.6% ± 8%) while those with a low RS derived
minimal benefit from addition of chemotherapy (CMF) to tamoxifen (10-year
DRFS increase −1.1% ± 2.2%) [60]. This led to the rapid adoption of the 21-gene
RS into adjuvant therapy decision making for node-negative hormone-receptor-
positive, HER2-negative breast cancer ahead of the availability of level-1
prospective randomized trial data.

TAILORx was the prospective randomized Phase III trial that evaluated the need
of chemotherapy in patients with hormone-receptor-positive, HER2-negative breast
cancer. Patients with tumors of 1.1–5 cm (of 0.6–1 cm if intermediate or high
tumor grade) and no lymph node metastasis are eligible [61]. It is important to note
that this trial shifted the cutoffs for low-, intermediate-, and high-risk groups.
Patients with a score <10 were not randomized and were treated with endocrine
therapy alone. Excellent 5-year invasive disease-free survival {93.8% (95% CI:
92.4–94.9)} and overall survival {98% (95% CI: 97.1–98.6)} for this low-risk
group were recently reported [61]. The results of the randomized population in the
study, those with an intermediate RS (11–25), were recently published and showed
that endocrine therapy alone was non-inferior to the addition of chemotherapy in
patients with an intermediated score with a HR for invasive disease-free survival of
1.08 (95% CI: 0.94–1.24). Exploratory analysis by age suggested that there was
some potential benefit of chemotherapy in younger women (50 years or younger)
with scores of 16–25 [61] with decreased distant recurrence risk especially in
women with scores between 21 and 25. Whether those benefits would still hold true
if optimal endocrine therapy, i.e., ovarian ablation plus an aromatase inhibitor as
opposed to tamoxifen alone were employed in this high-risk premenopausal group
of women (as supported by the joint analysis of the SOFT and TEXT trials) remains
an open question.
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Some evidence exists that the 21-gene expression assay may be useful in patient
with positive lymph nodes and that patients with a low score might not require
chemotherapy [62–64]. Available tumor blocks from the SWOG 8814 study of
node-positive hormone-receptor-positive patients were profiled for risk of recur-
rence and correlated with prospectively collected outcome data [65]. Patients in the
low RS category did not benefit from addition of anthracycline-based chemotherapy
(CAF) to tamoxifen (HR: 1.02; logrank p = 0.97). Those in the high RS group,
however, derived significant benefit from CAF (HR: 0.59; p = 0.03). The
prospective trial investigating this question is ongoing at this time (SWOG 0017,
RxPONDER trial).

The 70-gene signature test (MammaPrint) is another tool being used to deter-
mine which patients will benefit from adjuvant chemotherapy. This test uses DNA
microarray analysis of 70 genes to categorize patients as poor or good prognosis
[66, 67]. A randomized Phase III study (MINDACT trial) evaluated the clinical
utility of this test in patients with early node-negative or node-positive (1–3 positive
nodes) breast cancer. The genomic risk and the clinical risk were determined using
the 70-gene signature and a modified version of adjuvant online. Patients with low
clinical and low genomic risk did not receive chemotherapy and patients with high
clinical and high genomic risk received chemotherapy. Patients with discordant
scores in either the genomic or the clinical risks were used to determine the need for
or not for chemotherapy. The primary aim of this study was to determine whether
patients with high clinical risk and low genomic risk could avoid chemotherapy (if a
5-year distant disease-free survival of 92% or greater without chemotherapy could
be demonstrated in this group). This study reached its endpoint demonstrating that
the absolute benefit of chemotherapy in this genomically low-risk group despite
traditional high-risk clinic-pathologic factors was minimal and these patients do just
as well when treated with endocrine therapy alone [68].

Other commercially available genomic signature tools include the
PAM-50-based Prosigna risk of recurrence, EndoPredict, and the breast cancer
index. These tests differ in the number of genes tested, and the specific genes that
constitute the gene signature, but overall are able to select out a group of tumors
with favorable biology that have a low risk of recurrence. A retrospective study
compared the different genomic signatures for predicting distant and late recur-
rences along with two clinicopathological algorithms: the clinical treatment score
(nodal status, tumor size, age, grade, and endocrine treatment) and a 4-marker
immunohistochemical score. A total of 774 postmenopausal women who were
enrolled in the ATAC study (Anastrozole vs. Tamoxifen) trial had tumor blocks
available for this analysis. Patients who received chemotherapy or who had 4 or
more positive lymph nodes were excluded. The study found that each of the gene
signatures provided additional independent prognostic information in node-negative
patients compared to the clinical treatment score and IHC-4 score. However, the
performance of the genomic signatures tested was limited in node-positive patients.
This analysis did not assess the benefit from chemotherapy or extended endocrine
therapy though some assays like the breast cancer index have been evaluated in that
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setting to predict which patients may have significant residual risk of late distant
recurrences to warrant extended endocrine therapy [69, 70].

The use of precision medicine tools has also changed the current staging system
in breast cancer. In 2018, the AJCC published the new staging system introducing
for the first time a prognostic stage group based on different biomarkers such as
receptor status, tumor grade, and multigene molecular profiling. This change was
made due to the fact that biology impacts survival in BC. Patients with tumors of
the same size and same number of lymph node involvement have different out-
comes depending on their tumor markers. Using this new staging system, many
hormone-receptor-positive, HER2-negative breast cancers with a low recurrence
score will be down-staged to reflect their excellent prognosis. This also highlights
that, now more than ever, there is a tremendous need for selective decision making
regarding adjuvant therapy in hormone-receptor-positive early-stage breast cancer.

2.8.2 HER2-Positive Breast Cancer

HER2-directed therapy has dramatically changed the outcome of patients with
HER2 positive BC. After the approval of trastuzumab in metastatic HER2-positive
BC, it was evaluated in the adjuvant setting. There were four large Phase III ran-
domized trials that studied trastuzumab in the adjuvant setting and all of them
showed improvements in disease-free survival (relative reduction in hazard of 30–
35% for trastuzumab-containing arms) and overall survival (relative reduction in
hazard of 25–30% for the trastuzumab-containing arms) which led to the approval
of trastuzumab for the adjuvant treatment of HER2-positive BC [71–73].

Pertuzumab is another monoclonal antibody that showed impressive improve-
ments in progression-free survival and overall survival in the metastatic setting and
was then studied in the neoadjuvant and adjuvant settings. The NeoSphere clinical
trial was a multicenter open-label Phase II randomized trial that randomized patients
to four arms: A: trastuzumab plus docetaxel; B: pertuzumab and trastuzumab plus
docetaxel; C: pertuzumab and trastuzumab; D: pertuzumab and docetaxel. This was
followed by surgery and three cycles of FEC (5-fluorouracil, epirubicin, and
cyclophosphamide) and trastuzumab to complete one year. The primary endpoint
was pathological complete response. The trial showed a statistically significant
improvement in pathologic complete response in arm B compared with arm A
(39.3% vs. 21.5%) [74]. This leads to its approval in the neoadjuvant setting. Even
though there was improvement in the pathologic complete response, there was no
difference in progression-free survival. In 2017, results from the APHINITY trial
were published. It was a randomized Phase III trial of standard adjuvant
chemotherapy for 18 weeks plus one year of trastuzumab with either placebo or
pertuzumab. The 3-year disease-free survival (DFS) was 94.1% versus 93.2%
favoring the pertuzumab arm which leads to its approval in the adjuvant setting.
High-risk patients like those with hormone-receptor-negative and node-positive
patients derived greater benefit from dual HER2 blockade compared to the
hormone-receptor-positive subset [75].
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There are no clinically useful biomarkers that have emerged which can help
predict benefit or lack thereof from single or dual HER2-targeted therapy in the
early-stage setting. Some interesting observations, however, are worth mentioning.
In the neoadjuvant setting, tumors with a high HER2 mRNA expression [76] and
those with a HER2-enriched genotype on the PAM50 assay [77] have been shown
to have higher pCR rates when treated with HER2-directed therapy. Conversely,
tumors with a Luminal B genotype characterized by a high expression of ESR1 and
intermediate expression of ERBB2 genes derive the least benefit from adjuvant
trastuzumab [78]. These observations would need validation in additional data sets
to help define their utility for therapy selection in HER2-positive breast cancer.

2.9 Conclusions

The emergence of novel technology, data sharing tools, and creative clinical trial
designs has pushed precision medicine into the forefront of drug development and
care for oncology patients and established new drug approval paradigms. In 2017,
16 new small molecule and biologic applications were approved by the FDA, 5 of
those with breast cancer indications, highlighting the rapid pace at which novel
therapies are becoming available to our patients. This progress and expansion of
knowledge have also brought forth several new challenges. To name a few: iden-
tifying functionally significant targets from the gigabytes of genomic/proteomic
data, selecting patients most likely to benefit from targeted therapies, securing
access to therapy for individual patients, overcoming treatment-emergent resistance
and toxicities associated with new therapies like the checkpoint inhibitors that are
just now finding their way into breast cancer treatment protocols, and showing
limited application. Ongoing collaborative research, cross-discipline resource and
knowledge sharing, and setting a higher bar for clinically meaningful clinical trial
endpoints will ensure that precision medicine will ultimately deliver on its promise
of better treatments and outcomes for breast cancer patients.
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3.1 Introduction

Rare cancers pose a unique opportunity to harness the potential of precision
medicine. Precision medicine offers a new paradigm for the development of new
cancer treatments. It promises more effective treatments with less toxicity for
patients with cancer. Fulfillment of these promises would be particularly welcome
to patients with a rare cancer. Patients with a rare cancers face the challenges that
patients with more common cancers do but also must contend with a relative lack of
information available to them and their physicians to guide treatment. Patients may
have difficulty finding an expert or have to travel to get care from physicians with
experience treating their type of cancer. With refractory or recurrent rare cancers
when there is an absence of large prospective clinical trial data to guide
chemotherapy choices, genomic analysis of tumors or precision medicine offers the
opportunity to expose therapeutic options. Genomic sequencing to guide treatment
has become tractable in recent times due to the rapidly decreasing cost, increasing
evidence of clinical utility, and the increasing willingness of payers to provide for
tumor profiling. This chapter delves into the problems posed by rare cancers and
explores how precision medicine may improve patient care and outcomes.

3.2 Unique Problems for Patients with Rare Cancers

There is no generally accepted definition of rare cancers [1]. It is clear, however,
that in the aggregate, rare cancers are not really rare. Rare cancers are defined as
cancers with an incidence of less than 15 cases per 100,000 per year. There are less
than 40,000 new cases per year in the USA [2]. Using another perspective, if one
tabulates sixty of the least common of the 71 cancer types listed in the Cancer in
North America (CINA) database [3], these cancers account for 25% of all adult
cancers. Rare cancers tend to occur in patients who are younger, nonwhite, and
more often of Hispanic origin, when compared to patients with more common
cancers. Patients with rare cancers often face unique challenges in addition to those
encountered by patients with more common cancers [4]. These include delay or
difficulty in establishing a correct diagnosis, a possibility of previous errors in
diagnosis, encountering physicians who are unfamiliar with their cancer or offer
conflicting treatment recommendations, in addition to the need to research, find and
travel to seek care from expert providers. The internet is a valuable and powerful
resource for patients to find information regarding their cancers, establish contact
with other patients and advocacy groups, and to identify expert physicians. On the
other hand, it can also harm patients by exposing vulnerable patients to contra-
dictory or inaccurate information and dubious claims of miraculous results from
expensive treatments. Many rare cancers are aggressive and often fatal. Survival
rates for adult patients with rare cancers are generally poorer than for those with
common cancers [5, 6]. Patients and caregivers have limited evidence upon which
to base decisions for treatment, and the literature offering guidance for care is
frequently based on case reports or small single-institution series. For more
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common cancers, knowledge is gained from a traditional and progressive series of
clinical trials to establish the optimum care regimens. Prospective randomized
phase III studies to identify a standard treatment are uncommon when a disease is
rare because accrual of sufficient numbers of patients for such studies may not be
possible or may take years. The First International Randomized Trial in Locally
Advanced and Metastatic Adrenocortical Carcinoma Treatment (FIRM-ACT) study
to establish a multi-drug regimen as first-line therapy for advanced adrenocortical
cancer took over 5 years to accrue 304 patients from 12 countries treated at 40
centers [7]. Financial support for such studies is lacking as pharmaceutical firms
seek larger markets for agents in their pipelines and governmental agencies prior-
itize funding for more common cancers. Funding may be left to nonprofit
disease-focused advocacy groups. In general, fewer investigators study rare cancers
than more common cancers due to reasons such as access to grant funding or
availability of biospecimens. Genomics and related studies can be employed to
overcome these hurdles. It is hoped that insight from genomic interrogation of an
individual patient’s tumor will lead to improved outcomes. Indeed, notable
examples of remarkable advances based on the study of small numbers of patients
have resulted in paradigm shifts in the care of certain cancers.

3.3 Genomics for Diagnosis and Treatment

Cancer has traditionally been diagnosed based on tissue of origin and histologic
features, as in adenocarcinoma of the lung. Molecular genetic and genomic aber-
rations have been elucidated and implicated in the oncogenic process (Table 3.1).
Molecular analysis has changed the process of determining a diagnosis for many
cancers because molecular characteristics may alter the clinical behavior and out-
come as well as the response to proffered treatments (Table 3.2). This section is
meant to illustrate examples of the use of molecular techniques to improve the
diagnosis and the development of molecularly targeted agents against rare cancers.
The paradigm is repeated increasingly often in medical oncology to the benefit of
patients.

Nowhere is the role of molecular analysis, including cytogenetics and the study
of molecular alterations, more relevant than in the classification of sarcomas [8].
Genomic classification is now fundamental and has expanded the repertoire of
subtypes of sarcomas to many more than was previously appreciated by
histopathology [9]. There are now over 50 distinct histologic subtypes of sarcomas
as described by the World Health Organization [10]. Advances in immunohisto-
chemistry and molecular genetic analysis to identify characteristic markers, muta-
tions, and gene fusions have resulted in refined diagnostic criteria in a more recent
iteration of the WHO report [11]. Furthermore, molecular testing, in one study,
altered the diagnosis in 14% of cases initially reviewed by experienced pathologists
at sarcoma referral centers [12]. The molecular diagnosis then becomes determi-
native in the treatment of patients, as in when a KIT mutation is discovered in a
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gastrointestinal stromal tumor (GIST). An exon 9 or 11 KIT mutation suggests
sensitivity to imatinib, a tyrosine kinase inhibitor [13]. Conversely, secondary KIT
mutations in exons 13, 14, 17, or 18 that may be seen commonly seen after
treatment and confer resistance to treatment [14, 15]. An understanding of the
functional consequences of identified genomic aberrations associated with partic-
ular sarcomas can identify potential new treatments. Recently, an exploration of the
EWS-FL11 translocation characteristic of Ewing sarcoma showed it blocks the
function of BRCA1-mediated DNA repair and offers an explanation for the sen-
sitivity of this cancer to chemotherapy including etoposide and PARP inhibitors
[16]. Additionally, patients with sarcomas may harbor germline mutations such as
TP53 in Li-Fraumeni syndrome. These patients are at increased risk of other

Table 3.1 Definition of terms related to genomics

Term Definition Reference

Genetics The study of heredity including limited number of
genes and their functions

63

Genomics The study of genome, the complete genetic information
of an organism

77 (p. 496)

Mutation A permanent change in genomic DNA sequence 77 (p. 500)

Indel An insertion or deletion of one or more bases in the
genome

77 (p. 498)

Copy number
variant (CNV)

Presence or absence of a section of DNA 77 (p. 492)

Amplification Increased number of copies of a gene or DNA
fragments

3

Deletion Loss of DNA sequence from a chromosome that may
vary by length, ranging from a single base pair to a
large segment of chromosome

77 (p. 493)

Loss of
heterozygosity
(LOH)

Loss of one normal allele (wild-type) of a gene, while
the second allele is inactive

77 (p. 499)

Fusion genes Combination of genes or parts of two genes resulting
from structural rearrangements such as translocations
known as drivers of cancer

53 (p. 324), 64

Driver genes Genes that frequently carry somatic mutations in
different cancer types, while passenger gene mutations
appear to be non-recurrent in specific cancer types and
are not directly causing cancer development and
progression. Driver genes are classified in two different
categories: tumor suppressor genes and activated
oncogenes

77 (p. 314,
p. 494, and
p. 502)

Tumor
suppressor genes

Genes that are known to be involved in the regulation
of cell proliferation, where loss of function mutations in
these genes result in tumor development or progression

77 (p. 314)

Oncogenes Genes that are responsible for tumor development or
progression when activated

77 (p. 501)
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cancers as well, so screening for other tumors should be done. Family members of
affected patients then should also receive genetic counseling and testing.

Gene mutations in rare cancers such as brain tumors can inform prognosis and be
important for guiding treatment (Table 3.3). Malignant brain tumors occur with
annual incidence of 8.62 per 100,000 adults in the USA [17]. Of these, the most
common are gliomas which account for approximately 15%. Glioblastoma is the
most deadly and common type of glioma in adults. Grade I gliomas are curable with
complete resection, but those that transform into higher grade tumors have a poor
prognosis. Although the distinction has prognostic import, it is difficult to determine
by histopathology a secondary glioblastoma arising from a low-grade glioma from a
primary glioblastoma [18]. Mutations in the isodehydrogenase 1 gene (IDH1) occur

Table 3.2 Classification of sequence variants (adapted from Reference 93)

Classification Definition

A Pathogenic mutation A variant with sufficient evidence to cause a disease

B Likely pathogenic variant (VLP) A variant has strong evidence toward pathogenicity

C Variant of uncertain significance
(VUS)

A variant with conflicting or limited evidence to be
disease causing

D Benign or likely benign variants Variants with very strong or strong evidence
against pathogenicity

E Pathogenic mutation A variant with sufficient evidence to cause a disease

F Likely pathogenic variant (VLP) A variant has strong evidence toward pathogenicity

G Variant of uncertain significance
(VUS)

A variant with conflicting or limited evidence to be
disease causing

H Benign or likely benign variants Variants with very strong or strong evidence
against pathogenicity

Table 3.3 Levels of evidence for reporting of somatic variants (adapted from Reference 67)

Biomarkers Reference

A Biomarkers that predict response or resistance to an FDA-approved
treatment for a specific tumor type, on that have included in guidelines
from professional organizations. An example is detection of an EGFR
mutation in lung cancer

70

B Biomarkers that predict response or resistance to treatments based on
well-powered clinical studies with expert consensus. An example would be
BRAF mutation in Hairy Cell Leukemia

114

C Biomarkers that predict response or resistance to treatments approved by
the FDA or recommended by professional organizations for a different
tumor type, an off-label indication. An example is the identification of an
ALK fusion in thyroid cancer

22

D Biomarkers that show a logical significance based on pathway, preclinical
studies or limited experience consisting of small series or case reports, with
no consensus. An example is the identification of an FGFR2 gene fusions
in cholangiocarcinomas

94
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in approximately 12% of gliomas and are thought to drive the progression of these
tumors to high-grade glioblastoma multiforme [19]. Gliomas, as well as anaplastic
astrocytomas, that harbor a mutant IDH1 or IHD2 gene have a significantly better
outcome than is associated with tumors with wild-type IDH genes [20]. Wild-type
IDH genes were a feature of primary high-grade tumors, leading the investigators to
suggest that determination of IDH mutation status could be a diagnostic aid.

In hematologic cancers, molecular characterization contributes routinely in
clinical practice to the diagnosis, assessment of prognosis, and in the determination
of treatment plans. For example, a mutation in the Janus Kinase 2 gene (JAK2
V617F) has been reported in 97% of cases of polycythemia vera and 50% of cases
of primary myelofibrosis [21]. Polycythemia vera is a myeloproliferative neoplasia
that may on occasion, undergo leukemic transformation which is then associated
with a bleak median survival of approximately 5 months [22]. Functional studies
showed the JAK2 V617F mutation results in constitutive activation. The later
finding of patients undergoing leukemic transformation often had JAK2 V617F
negative blast cells suggests that this mutation is not the initiating single-hit event
for this neoplasia [23]. First-line therapy in polycythemia vera has been phlebotomy
and hydroxyurea. Ruxolitinib, a JAK2 inhibitor, was studied in a cohort of 222
patients with polycythemia vera who had either unacceptable toxicity or inadequate
response to hydroxyurea and was found to be effective in 60% of patients and
overall was superior to continued standard treatment [24]. In this series, complete
hematologic remission was seen in 24% of patients.

An unusual subgroup of lymphoid and myeloid neoplasms is characterized by
eosinophilia and translocations in PDGFRA, PDGFRB, or FGFR1 resulting in
activation of these tyrosine kinase pathways [25]. Patients who harbor transloca-
tions in PDGFRA or PDGFRB respond very well to imatinib, whereas patients with
FGFR1 translocations do not [26, 27]. Early treatment of myeloid and lymphoid
neoplasms associated with eosinophilia if they have PDGFRA or PDGFRB rear-
rangements is warranted because progression to a more aggressive disease is likely.
Treatment with imatinib typically results in complete remission and prevents pro-
gression to leukemic transformation [28]. Conversely, FGFR1-rearranged disease is
associated with a high incidence of T cell lymphoblastic lymphoma with pro-
gression to acute myeloid leukemia and requires early aggressive combination
chemotherapy followed by allogeneic hematopoietic cell transplant [29].

Anaplastic large-cell lymphoma (ALCL) accounts for 10–15% of all childhood
lymphoma [30]. The great majority of these tumors harbor a gene rearrangement in
the anaplastic lymphoma kinase (ALK) gene. Initial reports showed that translo-
cations involving ALK were also present in nearly half of the cases of inflammatory
myofibroblastic tumors, a rare mesenchymal tumor of children and adolescents.
Subsequently, next-generation sequencing showed that additional ALK fusions
could be detected as well as actionable kinase fusions involving ROS1 and
PDGFRB in the majority of cases initially classified as ALK fusion negative [31].
ALK and ROS1 fusions are sensitive to treatment with crizotinib, a drug that was
developed for ALK fusion-positive lung cancer [32]. These findings led to a clinical
trial using crizotinib involving 26 patients with relapsed or refractory ALK position
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anaplastic large-cell lymphoma and 14 patients with inoperable or metastatic
inflammatory myofibroblastic tumors. The overall response rates were 83–90% for
ALCL depending on the dose used and 86% for IMT [33].

In chronic lymphocytic leukemia (CLL), treatment with chemotherapy and
immunotherapy has been associated with remissions but recurrences have high-risk
disease features and chemotherapy has increased toxicity in elderly patients. The
orally administered agent ibrutinib inhibits Bruton tyrosine kinase that mediates
signaling through the B cell receptor and thus induces apoptosis [34]. Ibrutinib is
proving to be a major advance in the treatment of CLL. Particularly encouraging are
the responses to ibrutinib seen in the subgroup of patients with deletion of chro-
mosome 17p13.1 that have a poor response to standard first-line chemoim-
munotherapy. For patients with relapsed or refractory CLL, treatment with ibrutinib
treatment led to durable responses with a 26-month estimated rate of
progression-free survival and an overall survival rate of 83% [35]. In this study, the
response rate in patients with a 17p13.1 deletion was 68%, including one complete
response. Most recently, an inhibitor of BCL-2, venetoclax, in combination with
rituximab, was demonstrated to be more effective than standard therapy with
bendamustine plus rituximab in patients with prior treatment [36]. Currently, a
phase II trial is ongoing to look at the combination of venetoclax and ibrutinib in
refractory or relapsed CLL or in untreated patients with high-risk genetic features
(NCT02756897).

Another illustrative example of a remarkably effective precision medication
targeted against a rare cancer with a specific gene mutation is vismodegib. This
drug is an inhibitor of the smoothened homologue (SMO) gene. Cyclopamine
blocks hedgehog pathway signaling by binding to SMO and blocking activation of
GLI and other downstream genes [37]. Cyclopamine has poor oral solubility, and
its lack of specificity of action results in off-target toxicity [38]. High-throughput
screening of a chemical library and subsequent development by medicinal chem-
istry led to the discovery of vismodegib, a more potent inhibitor with more desir-
able pharmaceutical properties [39]. Basal cell carcinomas (BCCs) of the skin are
typically cured by surgical excision but may on occasion progress into invasive or
metastatic cancers. Almost all BCCs harbor genetic aberrations in the sonic
hedgehog (SHH) pathway, most commonly a loss of function mutation in the
patched homologue 1 (PTCH1) gene which normally acts to suppress activation of
SMO. The loss of function mutation releases inhibition of SMO with resultant
downstream gene activation. Vismodegib was remarkably effective from the onset
[40]. In the initial study of 33 patients, objective responses were seen in 18 patients
including 2 with complete responses. Of the other patients, 11 had stable disease,
and 4 had progressive disease. A later larger study showed a median overall sur-
vival for patients with advanced basal cell carcinoma treated with vismodegib was
33.4 months [41] which compares very favorably to the 8-month median survival
time previously reported with systemic chemotherapy [42]. Mutations in PTCH1
are also a common feature of medulloblastomas, a rare malignant tumor of the
cerebellum occurring in children or young adults [43]. Relapse or progression after
primary therapy is associated with a median survival of less than 6 months and a
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2-year survival rate of only 9% [44]. Efficacy of vismodegib in SHH aberrant
medulloblastoma was demonstrated in phase II trials but its beneficial effect was
negated by the coexistence of mutations in the TP53 tumor suppressor gene. There
was also no benefit if SHH mutations were absent [45]. The side effects of this
agent are generally well-tolerated but show on target effects of SHH inhibition such
as the loss of taste and smell [46].

3.4 Genomics in the Development of Novel Treatment
for Rare Cancers

In precision medicine, one can learn from exceptional responders. A patient with
bladder cancer enrolled in a phase II clinical trial achieved a durable complete
response to treatment with everolimus, a drug that targets mTOR overactivation.
Although the study was unsuccessful overall in that it failed to meet its projected
endpoint, the investigators did whole genome sequencing (WGS) to discern why
that particular patient did so well [47]. Loss of function mutations was identified in
TSC1 and in NF2 which in preclinical models have been associated with mTORC1
dependence [48]. Testing of other patients’ tumors showed that indeed, mutations in
TSC1 were associated with improved response to treatment with everolimus. Other
rare mutations are identified in cancers that may expose effective therapeutic
opportunities. In non-small-cell lung cancer (NSCLC), an ALK fusion is a fortu-
itous finding. In ALK-positive NSCLC, first-line targeted treatment with crizotinib
is associated with better progression-free survival, greater response rates and less
toxicity than is associated with standard chemotherapy [49]. Crizotinib is also more
effective than chemotherapy in ALK-positive NSCLC in patients who have pre-
viously been treated with a platinum-based regimen [50]. ALK fusions have also
been described as low-frequency oncogenic events in other cancers including those
of the thyroid, kidney, bladder, and rectum [51–53]. Another uncommon somatic
event is the occurrence of fusions of the NTRK gene in approximately 1% of all
cancers, but they are targetable driver events [53]. Several NTRK inhibitors are
under development and showing encouraging results in multiple tumor types [54].

Precision medicine using genomic analysis of patients’ tumor DNA may expose
options for off-label use of FDA-approved drugs or clinical trials with novel agents.
The routine use of next-generation sequencing in a coordinated fashion in rare
cancers is beginning. Initial institutional experiences suggest that actionable vari-
ants are commonly found leading to beneficial results with targeted therapy. The
University of California San Diego published their results of tumor and plasma
circulating tumor DNA sequence analysis and immunohistochemistry for drug
targets with 40 patients presenting to their rare tumors clinic [55]. In all 37 (92%) of
their patients had a least one target identified that corresponded to FDA-approved
drug or an investigational agent. Several commercial and academic laboratories
were used so molecular analysis varied. In this series, twelve of their patients did
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have data available to assess progression in matched treatment compared to time to
progression on their most recent prior treatment. These patients had significant
improvement on matched therapy. This endpoint was previously reported in the
Bisgrove Trial as significantly improved or greater than 1.3-fold longer
progression-free survival in 27% of patients receiving drug treatment matched to
the identified molecular target in their tumors [56]. The tumor analysis in this study
uses immunohistochemistry to predictive markers and gene expression array. While
most of these patients had breast or colorectal cancer the study did show benefit,
however, in patients with cholangiocarcinoma, mesothelioma, eccrine sweat gland
cancer, and a gastrointestinal stromal tumor. Another widely cited report is the
retrospective analysis by the Intermountain Healthcare team, showing that for a
matched cohort group of 72 patients with a variety of advanced cancers, the average
progression-free survival for the group treated with a precision medicine approach
was 22.9 weeks compared to 12 weeks for the control group [57]. In a subset
analysis where the information was available because patients received their care
within their system, the precision medicine group’s charges were $4665 per week
compared to $5000 per week for the control group of patients. In this study, the
testing was done by the in house laboratory using a 96 cancer-related hotspot gene
panel. The systematic study of the potential benefits of a more comprehensive
molecular analysis using full exon comprehensive gene panels or even whole
exome sequencing needs to be done to broadly to assess outcomes and the impact
on value, quality, and cost of care.

Given the potential for benefit, consideration is needed for how one uses
genomic data to identify a potential drug for treatment. A consensus statement from
the Association for Molecular Pathology, the American Society of Clinical
Oncology and the College of American Pathologists set standards for the reporting
and interpretation of gene sequence variants in cancer [58]. Reporting of somatic
variants should be categorized based on their clinical impact with Tier I variants
having strong clinical significance. An example is the PML-RARa fusion between
promyelocytic leukemia gene and retinoic acid receptor a which is pathognomonic
for promyelocytic leukemia [59] and is associated with a good prognosis and
response to all-trans retinoic acid or arsenic [60]. Tier II variants are of potential
clinical significance. Tier III variants are of unknown clinical significance, and
Tier IV variants are benign or likely benign. When the variants are tied to drug
response or resistance, these genes would fall stratified based on levels of evidence.
The highest level of evidence associates either response or resistance to an
FDA-approved drug for an approved indication based on the gene variant. Lower
levels of evidence are assigned based on predicted response or resistance based on
well-powered studies with consensus from expert in the field, then for therapies
based on a biomarker but for different type of tumor than for which the drug is
approved. The lowest levels of evidence are assigned to results of small series or
case reports and plausible therapeutic import based on preclinical studies [58].
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3.5 Basket and Umbrella Trials

Basket and umbrella trials are seeking to clarify the clinical utility of the application
of molecular analysis into routine care. As previously explained, patients with rare
cancers for which there are no approved drug treatments often lack available
clinical trials. Drugs developed to target a mutation in one type of cancer may be
found to be effective in the treatment of other cancers that harbor the same muta-
tion. For these reasons, increasingly trials are open to multiple tumor types har-
boring a particular gene mutation to which the study agent is designed to target.
Ideally, patients with rare tumors will be entered into basket trials that are designed
to test the efficacy of a drug on tumor harboring a particular mutation. The trials are
open to a variety of tumors and test therapeutic agents based on the presence of a
relevant mutation or predicted molecular target, irrespective of the tumor histology
[61]. Examples of basket trials include the National Cancer Institute Molecular
Analysis for Therapy Choice trial (NCI-MATCH) and the American Society of
Clinical Oncology Targeted Agent and Profiling Utilization Registry (TAPUR)
study. Drugs are assigned based on levels of evidence, and for example, priority for
gene to drug matching has been articulated for the NCI-MATCH trial [62, 63].
Pharmaceutical companies including Genentech (My Pathway) and Novartis
(Signature) also are sponsoring basket trials. In this way, a series of baskets are
included in the trial design each evaluating a particular mutation and corresponding
drug that targets that mutation. One may learn whether the drug has any efficacy
and whether the effect is context specific [64].

One advantage is that if a treatment is approved in another disease, efficacy in
another tumor type may be quickly seen. This was the case for vemurafenib, a
BRAF inhibitor, which targets the V600E mutation in BRAF common in mela-
noma. A basket trial included patients with Erdheim–Chester disease (ECD), a rare
slow-growing blood cancer that originates in the bone marrow [65, 66]. ECD is
estimated to affect 600–700 patients worldwide. BRAF V600 mutation has been
reported in 54% of patients with ECD [67] and treatment with vemurafenib was
associated with response rates of 43% in patients with Erdheim–Chester disease or
Langerhans cell histiocytosis [66]. This led the US Food and Drug Administration
to approve vemurafenib for the treatment of BRAF V600 mutant ECD in 2017.
Responses were also seen in other tumors with BRAF mutations including
anaplastic thyroid cancer, cholangiocarcinoma, salivary duct carcinoma, anaplastic
pleomorphic xanthoastrocytoma, serous ovarian cancer, and a thoracic clear cell
sarcoma [66].

The umbrella trial design differs from a basket trial in that umbrella trials focus
on patients with a particular tumor type or histology. Patients are assigned to a
treatment based on the genomic analysis of their tumor. Multiple treatment arms are
available for the tumor histology. This trial design recognizes that all cancers of
similar histology are not genomically identical, but rather they may differ in their
mutational profile. A successful umbrella trial was the Biomarker-Integrated
Approaches of Targeted Therapy for Lung Cancer Elimination or BATTLE trial
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[68]. Patients were assigned to one of four different treatment arms based on a
required biopsy at the start of the trial. A limitation of the umbrella design, how-
ever, is that even for common cancers such as non-small-cell lung cancer, an
umbrella trial may fail to accrue sufficient patients with rare mutations in their
corresponding arms [69].

With the expanding armamentarium of targeted agents available and underde-
velopment, there are more options and greater opportunities to assign patients to
clinical trials based on their tumor genomics. A meta-analysis of phase II clinical
trials supported this approach by concluding that a precision medicine approach
toward selecting trials for patients based on the mutations present in their tumors
results in higher median response rates and improved progression-free and overall
survival when compared to a non-selective assignment to clinical trials [70].
Moreover, a targeted approach was associated with fewer toxic deaths. Given the
difficulty in conducting traditional disease-focused clinical trials for rare cancers,
the alternative basket trial approach offers a path forward.

3.6 Genetics to Identify Patients at High Risk for Cancer

Investigators are beginning to demonstrate frequent germline mutations in cancer
predisposition genes in patients presenting with apparently sporadic cancers. In a
large screening program of 1120 patients with cancer younger than age 20, using
either whole genome or whole exome sequence analysis, pathogenic or likely
pathogenic mutations were identified in 8.5 of the patients [71]. The most com-
monly mutated genes were TP53, APC, BRCA, NF1, RB1, and RUNX1. In
patients with germline mutations, only 40% had a family history of cancer. Of
these, only half had a family history that was consistent with the observed cancer
predisposition syndrome. Our team observed that similar findings have been
observed in adults with cancer [72].

Datasets from tumor profiling using matched tumor–normal samples to filter for
true somatic events and improve variant calls allow researchers to query the burden
of unsuspected germline mutations in patients with advanced cancer. In one series
from Memorial Sloan Kettering Cancer Center, 12.6% of patients had germline
mutations in cancer susceptibility genes [73]. As was seen in the pediatric popu-
lation, the germline finding was concordant with the patients’ known cancer type in
less than half of the cases. Additionally in this study, almost all patients had at least
one variant of uncertain significance among the 187 curated genes in their panel.
Even if one restricts the calls to the cancer gene set endorsed by the American
College of Medical Genetics and Genomics (ACMG), 5% of patients had germline
mutations. Others have similarly found unsuspected germline mutations when
testing patients with advanced cancer [74]. These findings may alert the physician
to the need to screen the patient for other cancers or refer family members for
genetic testing. It may also inform one regarding potential treatment modalities.
Nearly 12% of men with metastatic prostate cancer harbor germline mutations in
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DNA repair genes including BRCA1 and BRCA2, ATM, CHEK2 [75]. Men with
metastatic prostate cancer and DNA-repair gene mutations may have a favorable
response to treatment with poly (ADP-ribose) polymerase (PARP) inhibitors [76]
and platinum-based chemotherapy [77].

Knowledge of germline mutations can be used to improve patient care by
appropriate screening for tumors, early intervention, and in some cases, preventa-
tive treatments. Rare cancers are a feature of the Li-Fraumeni syndrome (LFS). It is
a relatively uncommon inherited disorder in which affected individuals have a
germline TP53 mutation. These affected individuals are at increased risk for a
variety of cancers including soft tissue and bone sarcomas, breast cancer, adreno-
cortical cancers, and central nervous system cancers including gliomas, neurob-
lastomas, and choroid plexus carcinomas. Less commonly, these patients may
develop lung cancers, leukemias, kidney cancers bladder cancer, esophageal cancer,
stomach cancer, thyroid cancers, melanomas, pancreatic or colon cancer [78].
A registry at the National Cancer Institute shows that women with LFS have an
approximately 50% chance of developing cancer by age 31 years, and men have a
50% risk by age 46 [79]. Nearly all affected individuals develop cancer by age 70.
Many individuals with LFS develop two or more primary cancers over their life-
times. Several centers, including our own, have instituted periodic rapid
whole-body magnetic resonance imaging in order to screen affected LFS individ-
uals harboring germline TP53 mutations for early cancers. At initial screening, the
prevalence of detected new primary cancers has been 7–13% [80, 81]. In one series,
34% of patients had abnormalities on initial screen that required further evaluation,
and 7% of patients had new primary cancers [82].

Medullary thyroid cancer (MTC) is a tumor of the C cells [83] and accounts for
less than 5% of all thyroid cancers and is a familial cancer in approximately 25% of
the cases [84]. MTC is a feature of the familial medullary thyroid cancer (FMTC)
and the multiple endocrine neoplasia type 2 (MEN2) syndromes. The etiology is an
inherited autosomal dominant mutation of the RET proto-oncogene. There is a
certainty that patients who inherit the RET mutation will develop MTC [85].
Prophylactic thyroidectomy in childhood prevents the development of this cancer,
and the patients can be well-managed by oral thyroid hormone replacement [86].
Prophylactic thyroidectomy based on genetic testing has proven to be a safe and
effective method of management of condition. Prior to the discovery of the cau-
sative germline mutation in RET, all patients with a family history of medullary
thyroid cancer or MEN2 had to undergo biochemical screening tests to measure
pentagastrin-stimulated calcitonin levels annually as they had a 50% of harboring
the disease. Now, as a result of having genetic testing, unaffected patients need not
be screened and those affected can undergo prophylactic surgery [87]. Furthermore,
the clinical behavior and aggressiveness of tumors associated with particular
mutation are being elucidated. Patients with a germline RET M918T mutation have
particularly early-onset tumors, so total thyroidectomy is recommended in the first
year of life [87].
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Another less certain but notable example of germline mutations predisposing a
rare cancer occurs in the hereditary diffuse gastric cancer syndrome (HDGC). This
syndrome features diffuse gastric cancer and lobular cancer of the breast. Mutations
in the CDH1 gene, encoding epithelial cadherin or E-cadherin (CDH1), are iden-
tified in affected members of these kindreds. In a series of 183 index cases who met
clinical criteria for HDGC, 31 distinct pathogenic germline mutations in CHD1
were identified in 34 subjects (19%) [88]. The cumulative risk of gastric cancer
occurring in CDH1 carriers by the age of 80 was 70% for men and 56% for women.
In CDH1 negative patients, an additional 11% of the probands had pathogenic
mutations in other known candidate cancer genes including CTNNA1, BRCA2,
STK11, SDHB, PRSS1, ATM, MSR1, and PALB2. Members of affected HDGC
kindreds who test positive for a pathogenic mutation in CDH1 should strongly
consider a prophylactic gastrectomy [89]. This decision, however, is not as
straightforward as the case put forth for prophylactic thyroidectomy in
MEN2-affected individuals. As noted above, the penetrance of CDH1 for HDGC,
although high, is not 100%. The risk of the surgical gastrectomy procedure and the
long-term consequences of living without one’s stomach are more impactful than
living without a thyroid gland. The optimal timing for gastrectomy in unknown but
some suggest it should be done by age 20 [90]. Those that choose to delay or forego
surgery should undergo frequent endoscopic surveillance with multiple biopsies
ideally in experienced centers with established protocols [91]. Affected patients
should also be screened for the development of lobular breast cancer with breast
MRI. Prophylactic mastectomy is not generally recommended but may be a con-
sideration for some women [89]. An unresolved question centers around the patient
who does not have a family history of gastric cancer or lobular breast cancer who
undergoes germline panel testing for another reason and is found to have a germline
CDH1 coding variant, particularly if the variant does not result in a premature stop
codon and a truncated E-cadherin protein [89].

An increasing appreciation for the clinical utility of the identification of
cancer-related germline variants for screening and treatment has led to interest in
the potential for reporting these variants based on tumor profiling. The most
straightforward approach is to assess the germline sequences from assays that due
to tumor normal sequencing such as is done by with the groups at Memorial Sloan
Kettering with their MSK-IMPACT™ assay or by Ashion®, the Translational
Genomics Research Institute’s® clinical laboratory. This approach garnered sig-
nificant interest when the group at Johns Hopkins showed a false positive rate of
31% in reporting of somatic mutations that proved to be in fact germline mutations
(after filtering for common germline variants e.g., BRCA1) using a targeted panel
and 65% for exome sequencing [74]. Of particular concern is that in many cases,
the germline would have been falsely reported as an actionable somatic mutation if
a tumor-only approach was used. In this series notably, analysis of the matched
normal DNA identified germline alterations in genes associated with cancer pre-
disposition in 3% of patients thought to have sporadic tumors. Leading commercial
laboratories including Foundation Medicine and Caris Life Sciences offer solid
tumor analysis featuring tumor-only sequencing. The advantage of reporting
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tumor-only sequencing results is decreased cost as only one reaction is done.
Additionally, one does not need to obtain patient’s informed consent as one must
for germline sequence reporting, and one does not need to ask the patient to
undergo genetic counseling. One may suspect a reported variant observed on tumor
only sequencing is a germline mutation if it is represented in a high number of
sequencing reads-that is having a high variant allele frequency (VAF). Putatively, if
VAF is in excess of 50%, one might suspect a heterozygous germline mutation and
if 100%, then a homozygous germline variant is likely. When tested, however, this
approach was not reliable [92]. Results were affected by tumor content in the
sample and loss of heterozygosity. Recently, Foundation Medicine investigators
reported a computational algorithm that seeks to identify potential germline variants
from tumor-only sequencing [93]. The method depends on at least 10% normal
non-tumor cells in the specimen sequenced. The authors reported call rates of 85%
and accuracy rates of 95–99% in distinguishing somatic from germline variants in
their validation set. This approach, however, has not been verified by other
investigators and remains at best an indirect surrogate for direct germline sequence
analysis. Tumor-only approaches carry some risk of misclassifying somatic and
germline variants, and treating physicians must be aware of this limitation in
commonly used commercial tests.

The American College of Medical Genetics and Genomics (ACMG) has pub-
lished guidelines for reporting of incidental findings in clinical sequencing [94].
Constitutional mutations in a published list of well-curated variants in a list of 56
genes associated with cancer and other diseases should be reported by the testing
laboratory to the ordering physician who, in turn, has the responsibility to provide
comprehensive counseling to the patient, or in case of children, their parents, or
guardian. The ACMG later amended their recommendations to state patients should
have the option to opt out of being informed [95]. Updated recommendations
referred to secondary findings rather than incidental findings because these genes
where intentionally being analyzed [96]. The number of genes that should be
reported increased to 59 as a result of additional curation efforts, adding 4 while
eliminating one gene from the list. At this point in time, patients with suspected
germline mutations in cancer-related genes identified by tumor profiling should be
referred to a genetic counselor and offered verification of the germline variant by
additional testing.

3.7 Database Efforts

As stated previously for rare cancers, finding an expert with experience treating the
disease may be difficult for patients. Large central databases detailing epidemiol-
ogy, clinical practices, treatment modalities, and outcomes offer the opportunity for
collective learning and experience that translate into benefits for patients. Fur-
thermore, annotation of genomic changes observed with treatment outcomes can
provide real-time improvement in the curation of genomic aberrations. Many
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patients receive treatment with targeted drugs that may have been approved for
another cancer, based on detection of a genomic mutation seen on next-generation
sequence analysis. If this occurs outside of a clinical trial, in the absence of a
database designed to collect outcome data, this experience with a particular patient
with a tumor harboring a particular patient receiving a drug is lost and does not
benefit other patients. Data-sharing efforts for rare cancers are beginning. The
National Cancer Institute recently funded the Kids First Pediatric Data Resource
Center designed to discover causes of pediatric cancers and birth defects through
the use of WGS and big data. There are many disease-focused databases and
registries, as well as those devoted to a group of rare cancers, including the Rare
Cancer Genetics Registry. Advocacy groups have participated to develop registries
to include genomic profiles of particular cancers. For example, the Multiple
Myeloma Research Foundation launched their effort called the CoMMpass
(Relating Clinical Outcomes in MM to Personal Assessment of Genetic Profile).
The CoMMpass study includes over 1000 patients with newly diagnosed treatment
naïve multiple myeloma from more than 100 sites in the USA, Canada, and the
European Union. Researchers are following the clinical course of patients and
collecting sequential tissue biopsies in order to learn how a patient’s molecular
profile may affect his or her clinical progression and individual response to treat-
ment. Commercial sequencing companies who do tumor cancer-related gene panel
testing have registries to collect clinical data and outcomes related to patients whose
tumors they have tested. Examples include Foundation Medicine’s Foundation
CORE™ and Caris Life Sciences’ Precision Oncology Alliance™. A promising
result of these efforts could be that an oncologist could query the database to learn
from collective experience treating a rare cancer harboring a targetable gene
mutation.

3.8 Future Advances in Genomics

The next advances in the understanding of the genomics of rare cancers will come
from more extensive molecular analysis, decreasing costs, improved analytics, and
access to a greater repertoire of targeted agents. The current most commonly used
genomic profiling test employs large gene panels consisting of approximately 400–
600 cancer-relevant genes. Testing may or may not employ germline analysis for
determination of true somatic variants or increased accuracy of the calling of copy
number alterations. Because cancer development may be influenced by oncogenic
genomic events in noncoding regions of the genome or due to epigenetic alter-
ations, important information would be learned by WGS and RNA sequencing as
well determination of the methylome (our unpublished data). These sequencing
technologies are available, but these tests are generally not yet CLIA certified and
thus not available for the care of patients. As a result of large-scale sequencing
research projects such as The Cancer Genome Atlas and the International Cancer
Genome Consortium, researchers are turning toward the investigation of rare
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mutated driver genes and the study of rare variants of driver genes [97, 98]. While
there exists now an extensive accumulation of available exome sequencing data,
there is a limited amount of information regarding somatic oncogenic mutations in
noncoding regions of the human genome. WGS would elucidate the role of aber-
rations in introns, promoters, regulatory elements, noncoding functional RNA, and
mitochondrial genes [99]. WGS may also elucidate the etiology of some cancers by
demonstrating, for example, viral DNA in the sequence of a patient’s tumor. WGS
analysis of liver cancer has detected integration of the hepatitis B virus into the
regions of the TERT and MLL4 genes [100, 101]. Similarly, investigators have
shown human papillomavirus genomic sequences integrated into the genome of
cervical cancer cells [102]. Mutations in noncoding DNA have been linked to
disease [103]. Mutations in expression quantity trait loci (eQTLs) altering expres-
sion of known cancer genes have been shown in melanoma, lung, colon, and many
other cancers by studying the WGS of paired normal and tumor tissues in 930
patients across 22 types of cancer from TCGA [104]. These findings may allow one
to identify therapeutic targets in patients for whom standard limited gene panel
testing does not [105].

Improved analytics of multiple datasets such as whole genome sequencing,
methylome, RNA sequencing, and proteomics, in other words, a multi-omic anal-
ysis of tumors will also lead to a greater understanding of the pathogenesis of
various rare cancers and one to prioritize among potential therapeutic targets. An
assessment of RNA can show that mutations may not be expressed or conversely a
mutation may be dominantly expressed and therefore may present a better thera-
peutic target. Methylation or other epigenomic changes may affect gene expression.
Mutations in noncoding regions of genes have been shown to alter gene expression
[104]. A greater understanding of the functional consequence of a set of mutations
requires one to move beyond a linear pathway model to a network model. Com-
binations of mutations may interact to cause cancer or expose therapeutic vulner-
abilities. Different combinations of genomic events may be associated with a cancer
etiology forming a mutational signature [106]. In the case of a rare cancer, one
might be able to map a genome to one of the identified signatures seen in tumors
harboring inactivation mutations in BRCA even in the absence of a BRCA muta-
tion, or BRCAness. One might surmise then that treatments including PARP
inhibitors that show efficacy in tumors harboring a BRCAness signature might then
also work in such a rare cancer having the same signature [107, 108]. Enhanced
resources to better define druggable genes and define drug–gene interactions to
support drug development and patient care are being developed [109]. These need
to include better paradigms for matching drugs to multiple pathways, and muta-
tional signatures will move beyond the current simplistic single-gene mutation to
corresponding drug model. These approaches may include metronomic dosing
[110] or synthetic lethal considerations as well [111, 112].

Molecular profiles from WGS and RNA sequencing may better predict response
to immunotherapy as well. Current predictive biomarkers including total mutational
burden on gene panels and PDL1 immunostaining are suboptimal. Somatic muta-
tions have been identified that would appear to confer resistance to immunotherapy,
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including in APLNR and the Janus Kinases [113]. Mapping mutated sequences
derived from transcriptomes to known HLA-specific MHC binding motifs might
also predict the immunogenicity of a particular tumor [114]. Identification of the
burden and character of such neoantigens in individual tumors will one day allow
for more effective tumor vaccines and immunotherapy [115, 116].

3.9 Hurdles to Be Overcome

Barriers to widespread adoption of genomic analysis remain. One must demonstrate
clinical utility of the precision medicine approach to treating patients with cancer. In
other words, do the findings of genomic analysis alter treatment plans devised by
physicians and do the patients derive a benefit as a result? While costs are declining
for sequencing, payers have not agreed on criteria for testing [117]. The evidence for
clinical utility is accumulating which will prompt payers to reimburse genomic
testing and just as importantly, pay for the targeted treatments prescribed and the
perception that costs will increase may not be true. An early report notably showed
no increase in cost associated with treatment based on molecular profiling as well as
a significantly prolonged progression-free survival [57]. The rapid development of
complex testing and its interpretation vexes many physicians who might have a
fairly rudimentary knowledge of genomics and little understanding of sequencing
technologies. Testing platforms vary with different coverage of genes, such as entire
exon coverage or hotspot testing, as well as differences in sensitivity or false positive
rates. Hence, the selection of appropriate genomic tests based on advantages and
limitations of the particular testing method may result in failures to identify or
correctly interpret genomic aberrations. Similarly, payers may not be sufficiently
informed to understand differences in tests. Multi-disciplinary molecular tumor
boards established by institutions are one way to assist in patient management (see
sidebar). Such molecular tumor boards would include the traditional medical spe-
cialties but would also include molecular pathologists, clinical genomics scientists,
and research pharmacists. Case presentations would highlight the results of genomic
testing and the therapeutic implications to assist doctors in developing treatment
plans. Additionally, hospitals and professional societies must develop continuing
education programs for physicians and other healthcare providers. Lastly, there are
potential legal liabilities associated with either the failure to order genetic testing
when appropriate or with the incorrect interpretation of test results [118, 119].

3.10 Summary

Application of precision medicine to the treatment of rare cancers in clinical
practice at present requires a dedicated effort. A team approach of physicians is
needed to include not only medical oncologists, surgeons, radiation oncologists,
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radiologists, and pathologists but also experts in molecular genetics, variant sci-
entists, genetic counselors, pharmacologists as well as billing and insurance spe-
cialists. There is little doubt that genomics is the future and for many rare cancers,
the future is now. The pace of discovery and progress driven by more in-depth
sequencing and integrative analysis of multi-omic tumor profiling will accelerate.
Even common cancers may have rare variants that should be identified as in
non-small-cell lung cancers that harbor an EML4-ALK gene rearrangement which
impacts greatly on treatment decisions and outcome. Rare cancers may share
genetic aberrations with more common and better-studied cancers so that treatments
developed for more common cases, as was the case for BRAF mutant melanoma,
may be repurposed to the treatment patients with the rare cancer. There remains a
need for more therapeutic agents to exploit the identified targets. Genomics presents
a path forward to overcome many of the impairments to the development of more
effective and less toxic treatments for patients with rare cancers.
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A Case Report from a Rare Cancer Precision Medicine
Tumor Board

Sourat Darabi
Hoag Family Cancer CenterNewport Beach, CA 92603, USA

A 41-year-old woman with no family history of cancer was diagnosed with mod-
erately differentiated serous adenocarcinoma of ovary. She underwent a radical
hysterectomy with tumor debulking, followed by chemotherapy with carboplatin
and paclitaxel (paclitaxel/carboplatin). The patient later developed recurrence of her
cancer and was treated with carboplatin heated intraperitoneal chemotherapy.

A comprehensive somatic 592-gene sequencing panel tumor profiling (Caris Life
Sciences, Phoenix AZ) was performed on the patient’s tumor. The results showed
no microsatellite instability (MSI), proficient mismatch repair by immunohisto-
chemistry, estrogen receptor positive immunostaining, and a pathogenic variant in
BRCA1 gene, p.K1254fs (Table 3.4). The gene encodes BRCA1 protein that is
involved in DNA damage repair. Pathogenic variants in this gene have been
associated with increased risk of several types of cancer, including hereditary breast
and ovarian cancer. Somatic BRCA1 mutations are illustrated in Fig. 3.1 with 63
truncating mutations from The Cancer Genome Atlas (TCGA) [120]. The specific
loss of function BRCA1 mutation identified in this patient’s tumor could be a
potential germline variant, so referral to a genetic counselor and germline testing is
recommended. Individuals who harbor germline mutations in BRCA1 are at
increased risk for cancers of the breast, ovary, prostate, pancreas, and possibly
colon and other cancers.
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Ovarian cancer is estimated to be responsible for approximately 2.3% of all
cancer deaths in the USA in 2018 [121]. Approximately half of tumors in patients
with high-grade serous ovarian cancer have homologous recombination repair
deficiencies, which are most often caused by pathogenic mutations in the BRCA1 or
BRCA2 genes [122]. Germline mutations in BRCA1 and BRCA2 are also frequently
seen in patients with high-grade serous ovarian cancer [123]. Homologous
recombination repair deficiencies lead to insufficient double-stranded DNA breaks
repair [124]. Poly (ADP-ribose) polymerase (PARP) enzymes repair
single-stranded DNA breaks with a mechanism called base excision repair (BER).
Inhibition of PARP in tumors with homologous recombination repair deficiencies
causes inaccurate DNA repair leading to cell cycle arrest and apoptosis, as it is
illustrated in Fig. 3.2 [124, 125].

Table 3.4 Highlights of patient’s tumor profiling results

Biomarker Method Results

Total
mutational load

NGS Low ! 6 mutations/Mb

MSI NGS Stable

Mismatch
repair status

Presence or absence of MLH1,
MSH2, MSH6, and PMS2
proteins by IHC

Proficient

ER IHC Positive

ERCC1 IHC Negative

TUBB3 IHC Negative

BRCA1 NGS Pathogenic mutation ! p.K1254fs
BRCA2 NGS No pathogenic mutation identified

ATM NGS No pathogenic mutation identified

Fig. 3.1 Spectrum of reported BRCA1 truncating mutations in cBIo portal [120]. The blue arrow
indicates the approximate region where the p.K1254fs variant identified in this patient occurred.
The horizontal axis displays the identified truncating mutations in 1754 samples (from three
different TCGA datasets), and the boxes are BRCA1 domains. The vertical axis indicates the
frequency of the identified variants
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Olaparib is a PARP inhibitor and is approved to treat patients with ovarian
cancer that harbor BRCA1 or BRCA2 mutations. Patients with platinum-sensitive
high-grade serous ovarian cancer and somatic or germline BRCA1/2 mutations
benefit similarly from olaparib treatment; progression-free survival (PFS) is illus-
trated in Fig. 3.3 [123]. A combination of olaparib with chemotherapy (carboplatin
and paclitaxel) in patients with an advanced breast and ovarian cancer showed
significant results [126–128]. There are other PARP inhibitors on the market such
as niraparib and rucaparib. In a randomized, placebo control phase III clinical trial,
niraparib increased PFS in patients with recurrent ovarian cancer [129]. The
AREL3 study, a randomized, placebo control double-blinded phase III study,
showed rucaparib in patients with platinum-sensitive ovarian cancer improved PFS
[130].

Thus, the results from tumor profiling, along with the outcomes from several
clinical trials, provide valuable information to help clinicians offer a personalized
precision care for this patient. If the BRCA1 mutation proves to be a germline
mutation, then family members should be referred for genetic counseling as well.

Fig. 3.2 Molecular mechanism of PARP inhibition (PARPi). Single-strand break (SSB) DNA
repair is carried by mismatch repair (MMR), nucleic acid excision repair (NER), and base excision
repair (BER) mechanisms. PARPi impairs BER, so an SSB becomes a double-strand break (DSB).
Non-homologous end joining (NHEJ) and homologous recombination (HR) mechanisms are
involved in DSB repair. When PARP inhibition occurs in a patient who has a homologous
recombination repair (HR) deficiency, due to a BRCA mutation, then a DSB cannot be repaired and
cell death or apoptosis results [125, 131]
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Take Home Points

(1) Referral to genetic counseling for germline testing is recommended based on
the tumor profiling results;

(2) Consider PARPi to treat the patient according to the data, showing the efficacy
of PARPi in patients with BRCA mutations.
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4.1 Methodology

Immunohistochemistry (IHC) uses specific antibodies for detection of antigens
(epitopes) in tissues (cells and extracellular components) at a light microscopic
level. Antigen (epitope) bound antibodies must be visualized, most commonly
using a secondary detection and a chromogenic method. Localization of the color to
the appropriate tissue component or subcellular compartment under microscopic
examination is then subjected to various interpretation algorithms leading to
diagnosis, prognosis, and/or prediction of response to therapy.
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Simple qualitative interpretation (i.e., confirmation of expressed protein in its
cellular/subcellular localization) forms the basis for diagnostic application of the
IHC. Quantitative interpretation (usually in the form of percent of positive cancer
cells, but also a proportion of specific positive non-cancerous cells in the tumor)
forms the basis for prognostic and predictive (theranostic) applications of IHC [1].

Although IHC is a simple, frequently fully automated and reliable technique that
is affordable to most of the pathology laboratories, it is still mostly a subjective
method for which strict validation processes must be applied. Optimization, vali-
dation, and verification of clinical IHC tests must be performed by every laboratory
performing these tests in the era of precision medicine [2]. The vast majority of IHC
tests are developed in the individual laboratory and are designated as
“laboratory-developed tests” (LDTs). Several IHC tests are now designated as
“companion diagnostic” or “complimentary diagnostic” to indicate their status in
regard to the FDA approval/clearance status [3].

4.2 IHC as a Diagnostic Tool in Oncology

When morphologic features observed by a pathologist using light microscopic
examination are not sufficiently characteristic to assign the diagnosis, IHC is one of
the most commonly used “ancillary” diagnostic techniques. Antibodies used for
such purpose are traditionally divided in the “first-tier” antibodies capable of
detection of antigens expressed in general tumor lineages (epithelial tumors, mes-
enchymal tumors, melanomas, germ cell tumors, neuroendocrine tumors and
lymphomas) and “second-tier” antibodies reacting with antigens characteristically
expressed in specific histologic types within the specific lineage [4, 5].

4.3 IHC in the Evaluation of a Cancer of Unknown Primary
Site (CUP)

Immunohistochemistry should be applied meticulously in order to identify the
tissue of origin and to exclude chemosensitive and potentially curable tumors (i.e.,
lymphomas and germ cell tumors) [6, 7]. However, the majority of cases (about
80%) do not belong to specific subsets, and it may be reasonable to investigate
theranostic biomarkers in true CUP (those who remain without identified primary
cancer after a reasonable IHC evaluation). Recent investigation in theranostic
biomarkers (particularly those approved in lineage-agnostic manner [e.g., mismatch
repair proteins expression for detection of MSI-H cancers, see Fig. 4.1)] may
identify a subset of CUP susceptible to treatment with immune checkpoint inhi-
bitors (also known as immuno-oncology [IO] agents) [8].
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4.4 IHC in Cancer Subtyping—Breast Carcinoma

Seminal studies of Perou et al. and Sørlie et al. revealed at least four distinct
molecular subtypes including basal-like, HER2-positive, luminal A, and luminal B
[9–11]. This classification was validated by other researchers followed by discovery
of additional molecular subtypes. Currently (at least) seven molecular subgroups
have been recognized (Reviewed in: Reis-Filho and Pusztai [12]). Table 4.1
adapted from Reis-Filho and Pusztai [12] summarizes most recent classification of
breast carcinomas based on molecular expression profiles.

Immunohistochemistry can effectively and practically replace gene expression
array analysis to identify major subtypes using four tests. Assays for estrogen
receptor (ER), progesterone receptor (PR), Ki-67 proliferation marker, and Her2
(ERBB2) (modified Table 4.2 according to Goldhirsch et al. [13]) are utilized to
define the following: (1) luminal A (ER+/PR+/Her2-/Ki-67 low), (2) luminal B
(two subgroups: “HER2 negative”: ER+/PR+/Her2-/Ki-67 high and “HER2 posi-
tive”: ER+/PR+/Her2+/any Ki-67), (3) Erb-B2 overexpression (ER-/PR-/Her2+),
and (4) basal-like/triple negative (ER-/PR-/Her2-).

Fig. 4.1 MSI in cancer of unknown primary. This tumor showed isolated loss of PMS2 protein
by immunohistochemistry (IHC) and microsatellite instability (MSI) by next generation
sequencing. A pathogenic mutation, p.N38K, was detected in the MLH1 gene at a level consistent
with a germline mutation. In addition, a second pathogenic MLH1 mutation (c.1499delT) was
detected at a lower frequency and likely represents somatic loss of the normal allele. MLH1
missense mutations, such as p.N38K, can sometimes be associated with isolated loss of PMS2
staining by IHC
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Table 4.1 Molecular classification of breast cancer based on the microarray data (adapted from
Reis-Filho and Pusztai [12])

Molecular
subtype

ER/PR/HER2
status

Histologic
grade

Proliferation
rate

Basal
markers

Response to
chemotherapy

Prognosis

Luminal A ER+PR+
HER2-

G1/G2 Low Negative Poor Good

Luminal B ER+PR±
HER2�

G2/3 High Negative Intermediate Intermediate to
poor

HER2-enriched ER-PR-
HER2+

G3 High � Intermediate Poor

Basal-like ER-PR-
HER2-

G3 High Positive Good Poor

Claudin-low ER�PR�
HER2�

G2/3 Intermediate Positive Intermediate Intermediate

Molecular
apocrine

ER-PR-
HER2+
AR+

G3 High Negative Unknowna Poor

ER: estrogen receptor; PR: progesterone receptor; AR: androgen receptor
G1–3 tumor grading: G1: well differentiated; G2: moderately differentiated; G3: poorly differentiated
aIn authors’ experience, apocrine carcinomas (HER2+) may have a good response to chemotherapy (including
neoadjuvant) when combined with anti-HER2 treatment modalities
Note This molecular classification did not include the “normal breast-like” subtype; this subtype is poorly characterized,
and most authors agree that this subtype rather represents a technical artifact caused by the high contamination with
normal breast tissue during the initial microarray studies conducted in the period 2000–2003

Table 4.2 Clinical definitions of breast cancer subtypes (according to Goldhirsch et al. [13])

Molecular subtype of breast cancer Definition

Luminal A subtype ER positive
PR positive
HER2 negative
Low Ki-67 expression (<14%)

Luminal B subtype Luminal B (HER2 negative)
ER and/or PR positive
HER2 negative
High Ki-67 (>14%)
Luminal B (HER2 positive)
ER and/or PR positive
HER2 positive (3+ or amplified)

HER2-positive subtype ER negative
PR negative
HER2 positive (3+ or amplified)

Triple-negative subtypea ER negative
PR negative
HER2 negative

a80% triple-negative breast carcinomas are of basal-like subtype by microarray or
immunohistochemistry (basal cytokeratins, p63, calponin, SMA, or SMM-HC positive)
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From the clinical perspective, one of the most important breast cancer groups is
“triple-negative breast carcinoma (TNBC),” a heterogeneous group with various
molecular subtypes, of which “basal-like” being the most prominent, see Table 4.1
adapted from Metzger-Filho et al. [14]. Additional IHC biomarkers (basal cytok-
eratins, [e.g., CK5/6, CK14, CK17], p63, calponin, SMM-HC, SMA) may help
identifying a subtype of TNBC with basal phenotype (Table 4.2).

More recently, a theranostic value of the expression of AR in TNBC was rec-
ognized and a new term “quadruple negative breast carcinoma (QNBC)” was
introduced to distinguish TNBC lacking AR expression from TNBC expressing AR
at the treatment relevant levels (>10%) [15, 16]. Testing for androgen receptor
(AR) status has only recently become a routine for the triple-negative breast can-
cers, but rare breast malignancy (e.g., apocrine breast carcinomas) and some sali-
vary gland cancers consistently over-express AR and small case series have
examined the role of androgen deprivation in these patients, demonstrating clinical
benefit [17, 18]. Notably, a recent, phase II study conducted by Traina et al. showed
that anti-AR drug enzalutamide had a remarkable clinical activity and was well
tolerated in patients with advanced AR-positive TNBC (defined as AR expression
� 10% by IHC) [16].

Similarly, substitution of mRNA prognostic scores provided by OncotypeDX®

test by a combination of morphologic cancer characteristics and select IHC tests (ER,
PR, Her2, Ki-67) has been successfully achieved (e.g., Magee Equations [19, 20]).

4.5 Loss of Protein Expression as a Diagnostic Tool
for Mutation Status in Breast Cancer—Loss
of E-cadherin (CDH1) Expression in Lobular Carcinoma

Invasive lobular carcinoma (ILC) of the breast is the second most common mor-
phological subtype of breast cancer (after invasive ductal carcinoma, NOS), com-
prising up to 15% of all cases. Apart from its pleomorphic variant, classical ILC is
generally of a good prognostic phenotype, with a positive response to endocrine
therapy (due to consistent ER+/PR+ hormone receptor status). Thus, it is important
to reliably recognize this type of breast carcinoma. E-cadherin expression (encoded
in CDH1 gene and normally expressed in the cytoplasmic membrane of normal
breast epithelia) has become an important diagnostic feature of ILC because
approximately 90% of ILCs completely lack E-cadherin protein expression (in
contrast to invasive ductal carcinomas, which retain E-cadherin expression).
Somatic mutations are found in ILC and are dispersed throughout the CDH1 coding
region and are frequently truncating [21].
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4.6 IHC in Cancer Classification—Gastroenteropancreatic
Neuroendocrine Tumors (GEP-NETs)

Neuroendocrine tumors (NETs) can arise throughout gastrointestinal and respira-
tory tracts. Gastroenteropancreatic NETs are diagnosed by a characteristic cancer
morphology and expression of neuroendocrine markers (e.g., synaptophysin,
chromogranin A, CD56). A 2010 WHO classification of NETs incorporated Ki-67
proliferation marker IHC as a part of the classification and grading algorithm: NET
Grade 1 tumors exhibit Ki-67 < 3%; Grade 2 (3–20%) while grade 3 NETs (neu-
roendocrine carcinomas) show >20% Ki-67 labeling [22].

In case of pulmonary neuroendocrine tumors, Ki-67 labeling is mainly used to
separate the high-grade variants such as small cell (SCLC) and large cell neu-
roendocrine carcinomas (LCNEC) from the carcinoid tumors, especially in limited
samples, e.g., a needle biopsy with extensive crush effects and necrosis [23].

4.7 Historical Examples and Some Pitfalls of Diagnostic
Antigens Turned Biomarkers of Targeted Therapy

Certain biological properties related to cell of origin have successfully resulted in
the development of diagnostic IHC to cell characteristic antigens. The most
well-known example is the consistent expression pattern of a cell surface signaling
receptor, CD117, a product of the c-KIT proto-oncogene, which is a defining feature
of a biologically distinct group of stromal tumors of the gastrointestinal tract [24].

Prior to this knowledge, intra-abdominal mesenchymal tumors of the GI tract
mostly were known to be of smooth muscle, lipomatous, neural, and vascular origin
[25]. The discovery of CD117 positivity as a diagnostic criteria for gastrointestinal
stromal tumors or GIST (and their origin from interstitial cells of Cajal) was a major
breakthrough as CD117 staining by IHC became the new gold standard to
“molecularly” subtype a broad class of tumors. Remarkably, the discovery of
CD117 to define a molecular subtype of abdominal smooth muscle tumors led to
translation of these findings into a clinically actionable molecular target.

Simultaneous to the identification of CD117 as diagnostic criteria for GIST,
researchers also identified in these tumors activating gain-of-function mutations in
the c-KIT gene resulting in constitutive tyrosine kinase activity [26]. It was later
established that about 85% of GIST exhibit activating mutations in c-KIT, 10–15%
exhibit mutations in platelet-derived growth factor receptor A (PDGFRA), and the
remaining exhibit alternate mechanisms of oncogenic activation. During this time,
tyrosine kinase inhibitors which block the Bcr-Abl fusion protein of chronic
myeloid leukemia were also found to have activity against c-KIT and PDGFRA of
the same family of receptors, providing scientific rationale to assess the clinical role
of the targeted kinase inhibitor imatinib (Gleevec). After the first initial report of
activity of imatinib in a metastatic GIST patient [27] and a small case series
demonstrating 80% of GIST patients derive clinical response or stabilization of
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disease [28], imatinib was quickly approved for patients with c-KIT (CD117)
positive unresectable and/or metastatic GIST in 2001, and shortly after a companion
diagnostic, c-Kit pharmDx™ was also FDA-approved. To this day, the prescribing
label remains unchanged despite evidence that there are exon-specific differences in
survival outcome [29], whereby clinical practice guidelines now recommend a
dosage increase based on data demonstrating high-dose imatinib leads to longer
progression-free survival time in certain GIST subsets.

Similarly, during the early development of the anti-EGFR (epidermal growth
factor receptor) monoclonal antibody cetuximab, expression levels and phospho-
rylation status of the target, EGFR, was hypothesized to be a predictive marker for
clinical benefit. Grounded on the clinical development program assuming a strong
correlation between target expression and clinical activity, in 2004, the drug was the
second of its kind (followed the co-approval of HercepTest™/trastuzumab for
breast cancer) to be co-approved with diagnostic test for EGFR-expressing (EGFR
PharmDx™ kit) metastatic colorectal cancers (mCRC) [30]. However, this corre-
lation was never confirmed in controlled studies and in fact, several small studies
demonstrating clinical responses in EGFR-negative metastatic CRC patients chal-
lenged the use of EGFR expression to base treatment selection [31]. Subsequent
studies later found mutation events in RAS (KRAS/NRAS), signal transducer
downstream of EGFR, which occur in 40% of mCRC to be a negative predictive
marker for clinical benefit from cetuximab [32, 33]. To this day, the prescribing
information continues to include the initial approval summary regarding
“EGFR-expressing” mCRC although now updated for RAS genotype.

In summary, these bench-to-bedside stories of immunohistochemically defined
antigens, together with evolving scientific discoveries (e.g., activating mutation
event in tumor cells), have led to a paradigm shift in the development of targeted
therapies for cancer. These examples and others highlight important considerations
in the identification of molecular predictors and the development of targeted ther-
apies: (1) presence or absence of a drug target may not be the sole or best indicator
for selection of patients that may benefit from targeted treatment [34], (2) pathway
activation through mutations downstream of the drug target may have greater
impact on treatment response than target expression, and (3) a regulatory path to
update and revise prescribing labels is needed to provide the most complete source
of information at the regulatory level. In total, these events promote utilization of
broader molecular characterization to both define the specific disease and find
optimal treatment strategy for cancers.

4.8 IHC as a Prognostic and Predictive Tool in Oncology

Immunohistochemistry-based assays to demonstrate utility in differentiating prog-
nostic groups (e.g., early recurrence after primary treatment, aggressive phenotype,
etc.) have been investigated extensively across all solid tumors. The vast majority
of these studies do not meet the quality standards of large, prospective randomized
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trials to translate into the clinic, rather, most have been done in small cohorts with
inconsistent results [35]. Some biomarkers that have been explored across cancer
types are those that enable proliferative potential of cells, how cells respond to
DNA damage, or are surrogates for molecular classifications that are more
aggressive, such as Ki-67, p53, p16, BAP1, SDHX, and members of the HER
family, including EGFR and HER2. Despite the growing pool of prognostic
marker-based studies, none are routinely utilized in clinical practice [35] and those
with the strongest bodies of evidence, such as Ki-67 in breast cancer or p16 in oral
squamous cell carcinoma, are not without controversy [36, 37].

Whereas a prognostic marker is one that indicates overall outcome, regardless of
therapy utilized, a predictive marker is one that provides information whether or not
the therapeutic intervention is likely to be effective [38]. In addition, in the modern
era, drug development has shifted to target individual molecular alterations; thus,
genetic and molecular markers, which are often times the target of therapeutic
intervention, are increasingly tested to guide precision medicine. In oncology,
IHC-based predictive markers undoubtedly play a significant role in personalized
treatment selection. Although we may think of molecularly guided treatment
selection as something new, we have, in fact, been practicing precision medicine
since the early 1970s with endocrine-based treatments of breast and prostate cancers
[39, 40]. It was in the mid-1970s that an ER assay was introduced and later
morphed into modern-day testing of estrogen receptor status by IHC, to predict
responsiveness to endocrine therapy for breast cancer [40].

4.9 Targeted Therapy IHC Tests

The three most important properties of an ideal drug target are that the target is
disease modifying, has proven function in the pathophysiology of disease, and be
measurable [41]. Identification of drug targets for oncology can somewhat be an
exercise of reverse engineering, i.e., identification of the molecular changes that
“drive” cancer cells and develop therapies that intercept those molecular interac-
tions that are required for cancer cell growth. Therefore, oncogenic events such as
gene amplifications that lead to protein overexpression, kinase activation through
activating mutations, and genomic translocations that lead to constitutive expres-
sion of oncogenic proteins are ideal candidates for drug targets [42].

Indeed, the past 20 years of drug development in oncology have produced
therapies including monoclonal antibodies and small-molecule inhibitors that
exploit these molecular addictions [43]. Certain molecular results are required to
guide treatment options for advanced cancer patients, across various cancer types.
Broad-based molecular profiling assays which include large NGS panels to identify
mutation variants, amplification events, and fusion genes are now widely used,
given abundant commercial options, falling costs, and increasing coverage by
insurance carriers. Obtaining these results is highly dependent on specimen
requirements, and unfortunately, some biopsies yield very small specimens that are
highly unlikely to yield results from a standard NGS method. These instances are
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examples where IHC tests are ideal given they require only 1–2 slides for testing. In
situations where targeted therapies require results for treatment options, develop-
ment of antibodies that detect mutation variants provides a very practical and highly
impactful approach for patient selection.

4.10 Oncogenic Up-Regulation of Proteins Due to Gene
Amplification

One of the most well known and successful of these examples is the development of
trastuzumab, a humanized monoclonal antibody that binds to the extracellular
domain of HER2, a transmembrane receptor tyrosine kinase overexpressed (due to
gene amplification) in 15–20% of breast cancers [44, 45]. After many prospective
and randomized clinical trials, the benefit of trastuzumab has been confined to
breast cancer patients whose tumors have gene amplification as detected by FISH
(fluorescent in situ hybridization), which is tightly associated with protein
expression levels as detected by IHC. HER2 IHC testing is now routine part of
clinical workup for newly diagnosed breast cancer patients.

Given the hugely successful targeting of HER2-positive breast cancers with an
assembly of HER2-directed therapies (e.g., trastuzumab, ado-trastuzumab, per-
tuzumab, lapatinib, neratinib), exploration of other cancer types where HER2
overexpression provides cancer cell’s a survival advantage was inevitable.
Expression levels of HER2 across cancer types have been explored, identifying
cancers where HER2 expression is abundant and ranging between 10 and 30%
including colon, bladder, bile duct, and gastric cancers [46, 47]. Many studies have
been conducted to assess the therapeutic effect of trastuzumab in other
HER2-driven cancers; however, to date the strong mechanistic association between
HER2 and HER2-directed therapy has only been cleared for gastric adenocarci-
nomas [48]. Many case reports and series exist, and many clinical trials are still
ongoing to evaluate the utility of HER2-directed therapies in other cancers in order
to broaden its administration [49–52].

4.11 Oncogenic Overexpression of RTKs and/or Ligands
Due to Gene Fusions

Another mechanism of oncogene activation in cancer is genomic translocation of
two genes which can result in pathologic expression of a chimeric protein with
potent oncogenic properties [53] or overexpression of a gene downstream of a new
promoter. Gene fusions are common alterations in hematological malignancies
whereby testing for fusions is used for diagnostic and/or theranostic purposes. With
increasing utilization of broad-based molecular testing in clinical practice for all
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advanced malignancies, progress has also been made to identify fusion events in
solid tumors that drive cancer growth [53] and testing for some of these fusions are
necessary for the clinical management of patients.

4.12 ALK Fusions—ALK IHC

Detection of ALK gene fusions, which occur in about 3–4% of NSCLC, is part of
the standard molecular workup for all newly diagnosed advanced lung cancers.
Fusion with the echinoderm microtubule-associated protein-like 4 gene is the most
common binding partner for ALK (EML4-ALK) and has emerged as the second
most important driver oncogene in lung cancer and the first targetable fusion to be
identified in lung adenocarcinomas [54]. The historical gold standard detection
method of FISH with a dually labeled break-apart probe has been used to identify
fusions which are visually detected as a “split” hybridization signal [55]. Reports
indicate interpretation of these signals can be difficult or missed completely as they
are often subtle differences, but also due to complex FISH patterns that may be
misinterpreted [55, 56].

Furthermore, more recent technologies that detect fusion proteins such as
DNA-based targeted hybrid capture-based next generation sequencing (NGS) and
targeted RNA sequencing with multiplex PCR have also led to the identification of
ALK-positive cases that were otherwise found to be negative by FISH testing [57,
58]. A recent report demonstrated in 31 cases identified as ALK fusion positive by
NGS (4.4% ALK-positive rate), 35% (11/31) had discordant FISH results. Given
limitations of FISH, IHC has become an attractive alternative given low specimen
requirements, cost, and ease of testing [58]. Also favorable is the development of a
high concordance antibody, D5F3, with a sensitivity and specificity exceeding 90%.
Due to the high impact of identifying ALK-positive NSCLC with available treat-
ments like crizotinib yielding response rates of approximately 74% and median
progression-free survival of 10 months, compared to 45% and 7 months for
chemotherapy, respectively, the ALK (D5F3) antibody has been recently fully
cleared by the FDA as a companion diagnostic test for NSCLC [59–61].

Additional clinically impactful gene fusions following the discovery of ALK in
lung cancer have also been identified, including ROS1 [62], RET [63], and NTRK
[64]. Current methodological strategies to identify these fusions (some of which are
relevant across cancer types) depend on the availability of probes and antibodies for
target of interest. Currently, FISH probes are available for ROS1, RET, and NTRK,
and antibodies with good concordance to FISH and/or NGS technologies are
available for ROS1 and NTRK [65–67]. Potential diagnostic utility for ROS1 IHC
test for detection of ROS1 gene rearrangements in NSCLC patients had been
described [68, 69].
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4.13 ROS1 Fusions—ROS1 IHC

Oncogenic ROS1 gene fusion in NSCLC involves CD74, SLC34A2, EZR, LRIG3,
SDC4, TPM3, FIG, CCDC6, and KDELR2 and leads to expression of chimeric
protein with a constitutive ROS1 kinase activity. ROS1-rearranged lung cancer
comprises about 1% adenocarcinomas. Using D4D6 antibody, Yoshida et al.
applied H-scoring to the series of ROS1 rearranged and non-rearranged NSCLC and
obtained optimal discrimination (94% sensitivity and 98% specificity) with H-score
cutoff of � 150 (e.g., 2+ intensity in 75% of cells) [70].

4.13.1 NTRK Fusions—Pan NTRK IHC

Targeted inhibitors of neurotropic tyrosine kinases are highly effective in selected
patients (adults and children) with gene fusions involving NTRK1, NTRK2, or
NTRK3 [71, 72]. In a large prospective study, all three NTRK genes were involved
in fusions with 13 different gene partners; TPM3:NTRK1, and ETV6:NTRK3 were
the most common (six cases each) [73]. These fusions are consistently detected in
rare cancer types (e.g., secretory breast carcinoma, mammary analog secretory
carcinoma, congenital mesoblastic nephroma, and congenital infantile fibrosar-
coma) and in a small percentage of common cancers in adult patients (non-small
cell lung cancer, salivary gland, colorectal, head and neck, thyroid, bladder cancers
as well as malignant melanomas, soft tissue sarcomas, and CNS tumors/gliomas). In
order to maximize the detection of patients with tumors carrying targetable NTRK
fusions, recent studies have demonstrated that pan-Trk IHC testing with mAb
EPR17341 may serve as an effective screening tool before highly sensitive, con-
firmatory molecular tests (FISH or NGS) were performed [67, 74].

4.14 NUTM1 Fusions—NUT IHC

NUTM1 is an example of diagnostic marker and emerging predictive biomarker for
bromodomain and extra-terminal (BET) inhibitors.

NUT midline carcinoma (NMC) was originally defined as any malignant (ep-
ithelial) tumor with rearrangement of the nuclear protein in testis gene (NUTM1)
[75]. Although immunohistochemical NUT detection appears to be highly sensitive
for detection of the rearrangement (NUT is normally expressed only in testis) [50],
it is important to identify specific NUTM1 gene fusion in IHC-positive cases due to
the effective, targeted therapy with BET inhibitors. In the majority of cases,
NUTM1 gene is fused to BRD4 gene, forming the BRD4-NUT fusion. Remaining
cases have NUTM1 partnered with BRD3 or other rare partners (e.g., NSD3, MGA,
MXD4). The efficacy of targeted therapy with BET inhibitors in cases with these
novel fusions is not known, and additional functional studies on various fusion
partners are needed [76, 77].
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4.15 Loss of Protein Expression Due to Epigenetic
Silencing—MGMT Promoter Hypermethylation
(Genetic Vs. IHC Assay [78])

MGMT (O6-methylguanine-DNA methyltransferase) promoter methylation has
been established as a predictive biomarker in patients diagnosed with gliomas, for
treatment with alkylating agent temozolomide (TMZ). Patients whose tumors had
hyper-methylated MGMT promoter appear to benefit from TMZ. Expression of the
MGMT gene is regulated by the methylation-dependent epigenetic silencing.
Gliomas with inactivation of the MGMT gene are less capable of repairing DNA,
which leads to increased sensitivity to alkylating chemotherapy. The use of IHC for
the detection of MGMT protein has been described in a number of studies, with
significant discordance between MGMT expression as detected by IHC and by
MGMT DNA methylation, as well as discordance for survival. In patients with
leiomyosarcomas, a trend toward higher response to TMZ was observed among
patients whose tumors were lacking MGMT expression, as determined by IHC [79].

4.16 Expression of Mutated Genes

Immunohistochemical detection of specific epitopes in the protein derived from the
expression of a mutated gene (“mutation-specific antibodies”) has some advantages
over DNA sequencing approaches including direct visualization of the hetero-
geneity in the distribution of targeted proteins (e.g., clonal effect in the tumor) and
perhaps more importantly ability to detect mutations in a very limited sample and in
a short testing turnaround time [80]. Activating mutations in receptor tyrosine
kinases are cancer drivers where targeted therapies have been developed, including
EGFR and BRAF, two of the most successful drug-target stories in modern pre-
cision oncology era. Multiple antibodies have been developed that detect these
specific variants, with varying degrees of specificity and sensitivity. The significant
clinical benefit of small-molecule tyrosine kinase inhibitors (TKIs) in patients with
advanced NSCLC underscores the importance of accurately identifying patients that
would benefit from appropriate treatment for each molecular subtype.

4.17 Mutation-Specific Antibodies

4.17.1 EGFR

Epidermal growth factor receptor (EGFR) mutations in NSCLC are frequent, and
about 90% of these mutations occur in exons 19 (e.g., E746-A750 deletion) and 21
(leucine to arginine substitution at amino acid 858, L858R). The finding of an
activating EGFR mutation in NSCLC is the best single predictor of efficacy using
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selective tyrosine kinase inhibitors (TKI) [81]. Mutation-specific antibodies that can
detect E746_A750 deletion and L858R mutant EGFR proteins by IHC are available
[82]. However, as reported by Seo et al., various forms of exon 19 deletions (except
E746_A750) were rarely detected by the mutant-specific antibody. Therefore,
IHC-negative cases require further molecular analysis to confirm the absence of
EGFR mutations. Due to lower sensitivity and variable specificity, these assays are
more likely to be reserved for situations of limited tissue (e.g., cytological samples
contain only a few neoplastic cells) [83].

4.17.2 BRAF

Determination of the BRAF mutation status is of great importance in management
of patients with cancer and is now especially relevant given its role in guiding
options for precision medicine of solid tumors [84–86]. BRAF gene mutation
analysis is routinely performed using various DNA-based molecular assays, but
cost, expertise, and tissue requirements limit their widespread use. A BRAF p.
V600E-specific antibody (VE1 antibody; Ventana Medical Systems) has been
developed for use by IHC, and studies have shown good concordance, 100%
sensitivity and 91% specificity with detection of the BRAF p.V600E (BRAF
c.1799T > A) mutation (Fig. 4.2) [87]. Thus, IHC evaluation of BRAF p.V600E
may serve as a candidate surrogate for detection of mutation particularly in tumor
types with high proportion of V600E mutation (e.g., thyroid, melanoma, colon;
Fig. 4.2) [88] or in malignancies where BRAF-mutated cells within the tumor are
rare but clinically impactful (e.g., histiocytoses, GIST) [89, 90]. However, a number
of non-c.1799T > A mutations in BRAF gene lead to activation of the protein (e.g.,
V600K) and are potentially targetable, but are not going to be detected using the
V600E-specific antibody [87].

Fig. 4.2 BRAF V600E (c.1799_1800delinsAA) detection in limited sample of metastatic
melanoma. A small cluster of cells within the stromal tissue (arrow in H&E stained slide, left
image) may be too small for extraction of sufficient quantities of DNA/RNA for molecular
(sequencing, RT-PCR) testing. In this situation, a reliable BRAF V600E IHC staining (brown
cluster, right image) detects druggable target using a single tissue section
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4.18 Detection of Antigens Relevant
for the Antibody-Drug-Conjugated (ADC) Therapies

Antibody-drug conjugates (ADCs) are an emerging class of targeted therapies
utilized in oncology. Instead of counteracting molecular interactions or processes
within the cell, ADCs deliver a chemotherapy payload to a specific target on the cell
[91]. The antibody component of the ADC is directed against an epitope enriched in
the targeted cancer cells population. Several ADCs are in clinical use, such as
trastuzumab emtansine for breast cancer (expressing Her2) and brentuximab
vedotin for lymphoma (expressing CD30), and many more are in pharmaceutical
development for cancer [46]. Patient selection relies on either (1) knowledge the
target of interest is highly expressed in specific cancer types such as Trop2 in
TNBC [92], or dependent on development of an antibody to test for expression in
tumor tissues such as DLL3 in SCLC [93] and folate receptor alpha in ovarian
cancer [94]. Due to the success of these therapies in many chemotherapy refractory
diseases including TNBC, SCLC, and platinum-resistant ovarian cancer, their
development and reliance on quality metrics for detection of the expression of the
drug target make this class of agents a very active area of clinical research.

4.19 Chemotherapy-Predictive IHC Tests

Chemotherapy-based treatments are the backbone of standard cancer care. Most
chemotherapies are cytotoxic; they modulate or interrupt cellular processes required
for cell viability. By inducing unrepairable DNA damage (e.g., bulky adducts
caused by platinum agents) or cellular instability that cannot be overcome (e.g.,
microtubule de-stabilization caused by taxanes), these toxic agents force both tumor
and normal cells to die. Through our understanding of the cellular targets of
chemotherapies (i.e., mechanism of action), many studies have investigated whether
the presence or absence of certain molecules within tumor cells, which are often
aberrantly expressed, may be used to predict response to cytotoxic chemotherapy.
Some of the most extensively studied biomarkers as detected by IHC include
ERCC1 for platinum in lung cancer and TOPO1 for irinotecan in colorectal cancer
[95, 96]. Although these cellular targets are mechanistically sound, the multifac-
torial mechanisms of response/sensitivity and lack of reproducibility due to vari-
ances in antibodies and cutoffs may all contribute to these markers not being fully
implemented clinically [97].
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4.20 Immune Therapy

Targeted therapies that unblock immune checkpoint upregulation or immune
checkpoint inhibitors are another emerging class of agents that are expanding
quickly in oncology. These therapies have yielded impressive responses including
lasting durable benefit in certain cancers, including NSCLC, melanoma, renal cell
carcinoma, and others. Current predictive markers include (1) tumor mutation
burden (TMB) often caused by long-term environmental exposures that result in
extensive DNA damage, (2) microsatellite instability (MSI) in turn caused by
deficiencies in mismatch repair mechanisms, and (3) expression of inhibitory sig-
nals of immune checkpoints like PD-L1 in tumor cells and/or infiltrating immune
cells [98]. As a matter of fact, FDA approval of pembrolizumab is the first time the
agency has approved a cancer treatment based on a common biomarker rather than
the primary location in the body where the tumor originated. Two biomarkers,
referred to as microsatellite instability-high (MSI-H, a DNA-based test) or mis-
match repair deficient (dMMR, protein/IHC-based test), can be interchangeably
used for assessment of the treatment eligibility.

4.21 Immune Therapy IHC Tests

4.21.1 PD-L1

The most commonly used test for the eligibility assessment for immune checkpoint
inhibitors is expression of PD-L1 (CD274) on tumor cells (TC) or tumor-infiltrating
immune cells (IC). Several different antibodies against PD-L1 are in use as com-
panion diagnostics kits, complimentary diagnostics kits, or laboratory-developed
tests (LDTs) (Table 4.3). Thresholds for positivity of expression of PD-L1 on tumor
cells vary widely based on the intended use (e.g., in NSCLC pembrolizumab
monotherapy for pretreated, metastatic NSCLC is for tumors with 1 to <50% cancer
cells expression, while as a single agent, it is indicated for the first-line treatment of
patients with metastatic non-small cell lung cancer (NSCLC) whose tumors have
high PD-L1 expression [tumor proportion score (TPS) � 50%]). Expression of
PD-L1 on immune cells (IC) within the tumor is taken into calculation of combined
positive score (CPS), which is the number of PD-L1 staining cells (tumor cells,
lymphocytes, macrophages) divided by the total number of viable tumor cells,
multiplied by 100. The specimen should be considered positive for PD-L1 expres-
sion if CPS � 1 [99]. CPS is companion diagnostics approved for gastric/GEJ
adenocarcinomas and cervical carcinomas for treatment with pembrolizumab.

A particular difficulty in interpretation of PD-L1 expression is encountered in
tumors surrounded by a strong immune cells reaction and expression of PD-L1
(Fig. 4.3). In these tumors, LDTs with double immunohistochemistry (one for
PD-L1 and the other for cancer lineage specific antigen) may offer advantage over a
single PD-L1 staining (Fig. 4.3).
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Table 4.3 Overview of the available PD-L1 antibodies and their FDA status in regard to different
anti-PD-1/PD-L1 drugs

PD-L1 antibody
IO therapy

SP142
(Ventana)
Atezolizumab
(Roche)

SP263 (Ventana)
Durvalumab
(Astrazeneca)

22c3 (Dako)
Pembrolizumab
(Merck)

28-8 (Dako)
Nivolumab
(BMS)

73-10
(Dako)
Avelumab
(Merck
KGaA)

Non-small cell
lung cancer
(NSCLC)

Complementary
status
Threshold:
� 50% TC or
� 10% IC [106]

Companion status
Threshold: TPS
1%; 50% [107,
108]

Complementary
status
Threshold:
TC � 1%
(increasing
benefit for 5 and
10%) [109]

Bladder cancer Companion
status;
Threshold:
IC2/3 (� 5%)
(TILs) [110]

Complementary
status; Threshold(s):
� 25% TC
(membranous) or
ICP > 1% and IC
+ � 25% or
ICP = 1% and IC
+ = 100% [111, 112]

Companion status;
Threshold: > 1%;
(CPS) � 10
[113]

Complementary
status;
Threshold:
TC � 1%
[114]

Threshold:
TC � 5%
[115]

Melanoma Threshold: >1%
[116]

Complementary
status;
Threshold:
TC � 5%
[116]

Head and neck
squamous cell
carcinoma
(HNSCC)

Threshold: TC or
stromal
cells � 1% [117]

Complementary
status;
Threshold:
TC � 1%
[118]

Kidney cancer Threshold:
TC � 1%
[119]

Merkel cell
carcinoma
(MCC)

Threshold:
TC � 1%
[120]

Gastric and
gastroesophageal
junction cancers
(GE/GEJ)

Companion status;
Threshold:
CPS � 1 [121]

Cervical cancer Companion status;
Threshold:
CPS � 1 [122]

Hepatocellular
cancer (HCC)

Threshold:
TC � 1%
[123]

IO: Immuno-oncology; IC: immune cells; TILs: tumor-infiltrating lymphocytes; TC: tumor cells; ICP: immune cells
present; CPS: combined positive score
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4.22 Conclusion and Future of IHC-Enabled Precision
Medicine

4.22.1 Is There Space for IHC or Will Everything Be Gene
(NGS) Based?

Like with every new method, early enthusiasm over a period of time gets tempered
by its shortcomings. Without a doubt, sequencing of the human genome had opened
an unprecedentedly large view of the genome role in development of cancer, but it
is only a component of comprehensive system biology network at play in devel-
opment of the disease. Protein expression is an integral part of the system biology

Fig. 4.3 Application of double IHC stains to interpretation of PD-L1 expression in the tumor.
a and b colorectal carcinoma; c and d melanoma. PD-L1/CDX2 combination in case of metastatic
colorectal carcinoma (b) and PD-L1/MiTF combination (d) in a case of metastatic melanoma. In
both cases, PD-L1 expression (red membranous/cytoplasmic staining) is present at the interface
between the metastatic malignancy and stromal immune cells (a mixture of lymphocytes,
macrophages, and other cell types) and it is entirely restricted to the immune cells (negative for
nuclear brown CDX2 staining in the case of CRC and negative for nuclear brown MiTF staining in
the case of melanoma)
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and can be best investigated with IHC due to its ability to provide in situ mor-
phologic correlation at the cellular or subcellular level.

4.22.2 How to Overcome Shortcoming of IHC?

Classical IHC approach using one antibody stain at the time may no more be
suitable for the needs of clinical cancer care. Biopsy samples are frequently small
and do not allow for numerous sections needed for consecutive staining. Using
multiple antibodies on a single section can be greatly enhanced with the use of
fluorescent labeling and image analysis to accurately interpret composition of the
heterogeneous tumor sample.

4.22.3 Can a Functional Analysis of Biology Systems Using
Phosphoprotein-Specific Antibodies Be Used
in Clinical Applications?

The phosphoprotein levels provide insights into the activation/deactivation status of
the components of cell signaling pathways, and quantification of their levels could
have implications for prognosis and treatment in oncology. For example, phos-
phorylated forms of epidermal growth factor receptor (EGFR) or ERBB-2 (HER-2)
have been found predictive of progression-free survival in patients with metastatic
breast cancer treated with trastuzumab [100]. However, phosphoprotein levels are
affected by a multitude of pre-analytical variables such as tissue handling (ischemia
and time to fixation) and the method of fixation [101]. Furthermore, the levels of
phosphoprotein may be affected even before resection resulting from the stress
conditions during surgery itself. All this constitutes significant hurdles for the
introduction of phosphoproteins as biomarkers in clinical practice.

4.22.4 Can Non-antibody-Based Techniques (Aptamers)
for In Situ Detection of Protein Targets Be Used?

Aptamers, first reported in 1990, are single-stranded DNA or RNA sequences (as
well as peptides) that can specifically bind to targets by folding into well-defined
three-dimensional structures [102, 103]. They are promising recognition molecules
that can specifically bind to target molecules and cells in tissue-based assays and
can be detected using chromogenic methods similar to IHC [104]. Due to their
excellent specificity and high affinity to targets, aptamers have attracted great
attention in various fields in which selective recognition units are required.
Recently, DNA aptamers were successfully employed in development of a
poly-ligand profiling (PLP) that surveys phenotypic diversity underlying tumor
progression and distinguishes breast cancer patients who did or did not derive
benefit from trastuzumab [105].
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5.1 Introduction

Next-generation sequencing (NGS) technologies have provided the unparalleled
capacity to interrogate the genomic landscape of cancer. Large-scale research
sequencing efforts, such as those undertaken by the Cancer Genome Atlas (TCGA)
or the International Cancer Genome Consortium (ICGC) initiatives, have expanded
the catalog of “driver” mutations and provided key insights into the genomic
landscape of tumors, including identifying molecularly defined tumor subgroups
and genomic features with potential clinical value [1–7].

Genomic information is increasingly being integrated into molecularly guided
diagnosis, prognosis, and treatment of cancer. Genomic profiling is now included in
the standard clinical management of various tumor types, including melanoma,
glioma, sarcoma, lung cancer, breast cancer, ovarian cancer, colorectal cancer, and
thyroid cancer. In addition to gene-centric variants (mutations, copy number events,
and translocations/fusions), broader genomic features, such as mutational burden,
are also being utilized to aid in clinical decision-making.

In this chapter, we aim to provide a general overview of the ways genomic
information is being used to inform diagnosis, prognosis, and treatment of cancer.

5.2 Methods

A variety of DNA-based genomic tests are currently used in oncology, ranging from
single gene tests to whole genome sequencing. Single-gene assays are widely used
and focus on the detection of specific recurrent variants within key cancer genes,
particularly genetic variants with well-characterized prognostic and predictive value.
Clinically validated drug–gene relationships include the use of imatinib in Philadel-
phia chromosome–positive chronic myeloid leukemia, trastuzumab in HER2-ampli-
fied breast cancer, erlotinib and gefitinib inEGFR-mutated non-small cell lung cancer
(NSCLC), crizotinib in ALK-positive NSCLC, vemurafenib in BRAF-mutated mel-
anoma, and panitumumab in RAS wild-type colorectal cancer [8–13].

However, serial testing using single-gene assays can be time consuming and may
deplete limited tumor tissue samples. Advancements in DNA sequencing tech-
nologies and data processing tools have enabled the detection of several types of
genetic variation, including genomic mutations, amplifications, deletions, and
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translocations, from a single tumor biopsy [14]. NGS utilizes massively parallel
sequencing to perform genomic analysis with a turnaround time and cost that are
feasible for clinical application [15–17].

With the growing adoption of NGS in clinical laboratories, there is momentum
toward using more comprehensive sequencing strategies, typically targeted cancer
gene panels, though whole exome sequencing (WES) or whole genome sequencing
(WGS) assays are also being leveraged [18]. These NGS assays allow the detection
of a broader range of clinically relevant alterations and can aid in the identification of
additional patients who may benefit from genomics-informed molecularly targeted
therapy. NSCLC is a prime example, where the National Comprehensive Cancer
Network (NCCN) recommends broad genomic profiling beyond single-gene EGFR
and ALK testing, as the identification of rare driver alterations may also inform
treatment, either with an approved agent or enrollment on a clinical trial [19].

Use of NGS approaches, including targeted sequencing panels, WES, and WGS,
for genomics-enabled precision medicine in oncology is discussed and summarized
in Table 5.1.

5.2.1 Targeted Panel Sequencing

Targeted sequencing panels represent the most common NGS-based strategy cur-
rently being used to inform the clinical management in oncology [20]. These tar-
geted sequencing panels use a priori knowledge to select genes and genomic
variants of clinical interest and utility for measurement. Targeted sequencing panels
are customized, ranging from hotspot assays that detect specific, recurrent muta-
tions in a handful of defined genes, to assays that measure the entire coding region
of a larger set of selected genes. These sequencing panels can be designed to be
tumor-type-specific measuring key alterations within a defined tumor-type, or
tumor agnostic, measuring alterations more broadly relevant to cancer.

Various targeted sequencing panels are available within local hospital, univer-
sity, or commercial Clinical Laboratory Improvements Amendments (CLIA)
certified laboratories. In 2017, the US Food and Drug Administration (FDA)
approved the first two NGS cancer gene panel diagnostic tests, the Memorial Sloan
Kettering-Integrated Mutational Profiling of Actionable Cancer Targets
(MSK-IMPACT) and the Foundation One CDx (F1CDx) tests. These approvals
illustrate the growing shift toward more widespread and comprehensive genomic
evaluation for clinical management in oncology, where in vitro diagnostic tests are
used to measure multiple genomic variants in a single test rather than the traditional
model of measuring single cancer biomarkers linked to individual therapies in
separate assays. MSK-IMPACT is a 468-gene NGS assay that measures true
somatic variants through tumor-normal paired sequencing analysis of
formalin-fixed, paraffin-embedded (FFPE) tumor tissue for patients with solid
malignancies [21]. The test reports information on somatic mutations, copy number
alterations, and selected structural rearrangements, as well as mutational burden and
microsatellite instability (MSI) status. This expanded exome panel has been used to
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guide patient treatment and enrollment on molecularly matched clinical trials.
Indeed, prospective sequencing of over 10,000 patients with advanced cancer using
the MSK-IMPACT test was recently reported to result in 11% of patients enrolling
on a molecularly matched clinical trial [22]. F1CDx is a tumor-only NGS assay that
measures mutations and copy number alterations in 324 genes, as well as selected

Table 5.1 Next-generation sequencing strategies

Assay type Pros Cons

Targeted
panel
sequencing

• Most common NGS platform used in
oncology

• High-throughput assay with deep
coverage of targeted regions

• Focuses on current clinically
actionable alterations

• Can be customized based on disease
type or clinical interest

• Various panels available through local
institutions or commercial
CLIA-certified laboratories

• Dependent on a priori knowledge to
design the targeted panel

• Alterations outside of the reportable
target space will not be detected or
reported

• Can be tumor-only or paired
tumor-normal for true somatic calls,
depending on the assay

• Limited opportunities for future
research studies

Whole exome
sequencing
(WES)

• Covers the entire coding region of the
genome allowing the assay to capture
and report on rare variants in cancer
genomics and on new biomarkers as
they emerge, in addition to current
clinically actionable alterations

• Opportunities to evaluate
genome-wide copy number variants

• Available through local institutions or
commercial CLIA-certified
laboratories

• Provides more comprehensive data for
future research studies

• Not yet broadly adopted in the
clinical setting

• Typically utilizes a matched
constitutional sample for true
somatic variant calling

• Requires computational resources,
bioinformatics expertise, and
clinical interpretation support

Whole
genome
sequencing
(WGS)

• Most comprehensive and unbiased
sequencing strategy, capturing coding
and noncoding regions of the genome

• Opportunities for the detection of
translocations and noncoding events
that may be missed by other
approaches

• Provides the most comprehensive data
for future research studies

• Primarily used in the research
setting, though examples of clinical
WGS are emerging

• Requires matched constitutional
sample but allows for true somatic
variant detection

• Generally lower sequencing
coverage compared to targeted
panels or whole exome sequencing

• Requires additional computational
resources, bioinformatics expertise,
and clinical interpretation support

• Additional content included in the
noncoding regions of the genome
may not be well studied and thus
may provide a limited immediate
application for clinical care

NGS next-generation sequencing; CLIA Clinical Laboratory Improvements Amendments
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gene rearrangements, MSI status, and tumor mutational burden from FFPE tumor
samples. This assay is approved for use as a companion diagnostic test to identify
patients with specific mutations that may benefit from selected FDA-approved
therapies based on the approved drug labels. Seventeen on-label targeted therapies
and associated genomic biomarkers are listed in the current companion diagnostic
indications for this test. These include lung cancer patients that may benefit from
EGFR or ALK inhibitors, melanoma patients that may benefit from BRAF and/or
MEK inhibitors, breast cancer patients who may benefit from ERBB2 (HER2)
inhibitors, colorectal cancer patients that may benefit from EGFR inhibitors, and
ovarian cancer patients that may benefit from treatment with a PARP inhibitor.
Various other targeted exome assays are also available to aid in clinical decision
support. In addition to Foundation One, commercial testing is available from other
companies, such as Caris Life Sciences or Tempus. The Caris Molecular Intelli-
gence platform incorporates a targeted exome sequencing assay with immunohis-
tochemistry and in situ hybridization assays [23, 24]. Tempus xO provides an
expanded NGS-based sequencing panel, evaluating over 1700 cancer-related genes
using paired tumor-normal analysis while also incorporating whole transcriptome
RNA sequencing for unbiased fusion detection [25]. Institutions have also inter-
nally developed their own platforms [26] or implemented commercially available
platforms, such as the Oncomine Dx Target assay [27], a 23-gene panel that is
approved by the FDA as a companion diagnostic for NSCLC, or the Ion Torrent
AmpliSeq cancer hotspot panels [28], both from Thermo Fisher Scientific (www.
thermofisher.com). Local testing allows for customization of the gene panel content
based on local needs, but also requires local expertise in bioinformatics and
molecular diagnostics.

Exome panels provide for high-throughput, deep coverage measurement of
clinically significant alterations, allowing for the detection of low allele frequency
variants within heterogeneous or low tumor content samples. Panel characteristics
should be considered, as a potentially actionable event may not be detected or
reported if it is not within the defined gene list or reportable target space for the
panel. More comprehensive profiling may be particularly valuable for patients that
have failed the standard of care treatment and for whom the standard molecular
testing is negative [29, 30].

5.2.2 Whole Exome Sequencing

Though not yet broadly adopted for clinical management, WES is increasingly
being leveraged in precision medicine clinical trials and care for patients with
advanced cancer [31]. WES utilizes a selection or enrichment step to capture the
exome, or the coding region of the genome, for sequencing and is often performed
as a paired analysis with a patient-specific non-malignant sample, such as peripheral
blood [15, 32]. While the exome represents only *1–2% of the human genome, it
contains the majority of current clinically actionable variants. Indeed, the major
genome sequencing efforts by ICGC and TCGA utilized WES to develop a catalog
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of genomic alterations across cancer [2, 7, 33], informing our understanding of the
genomic basis of these diseases and revealing a landscape of potentially targetable
alterations that is being leveraged in the modern practice of genomics-enabled
medicine.

WES provides a broader view of the spectrum of genomic alterations within a
tumor, capturing alterations across nearly the entire coding region of the genome,
including the regions targeted on focused gene panel tests. This more compre-
hensive approach allows for the detection and reporting of rare variants in cancer, as
well as the inclusion of new and emerging biomarkers without the need to validate a
new test. However, the increased data generated with WES compared to targeted
gene panel tests also requires increased bioinformatic and clinical interpretation
support [34]. This may be particularly relevant for reporting variants of uncertain
significance. WES provides an added potential benefit of more broadly contributing
to the field of precision oncology research, with the potential to leverage these more
comprehensive data in research studies to identify novel therapeutic targets and
mechanisms of drug sensitivity or resistance [34]. However, WES may not capture
alterations in noncoding regions of the genome, which can be particularly relevant
for detecting breakpoints involved in clinically informative translocations. The
inclusion of RNA sequencing can help overcome some of these challenges by
providing an orthogonal measure to detect these clinically relevant gene fusion
events [35]. RNA sequencing can also aid in variant prioritization by confirming
that variants of potential interest are expressed in the RNA and by providing insight
into allele-specific expression [36]. Several studies have reported the use of inte-
grative clinical exome and RNA sequencing and demonstrated feasibility for this
approach in the management of advanced pediatric and adult cancers [35, 37–42].

5.2.3 Whole Genome Sequencing

Whole genome sequencing allows for sequencing of the entire genome. While gen-
erally providing lower sequencing coverage,WGScan effectively detectmost types of
somatic variation. In addition to exome coverage, WGS also detects mutations in
noncoding regions, including untranslated regions, introns, promoters, and noncod-
ing RNAs, as well as large deletions, insertions, duplications, and translocations.
Thus, WGS provides a more comprehensive view of the tumor genome [43].

WGS produces a large amount of sequencing information, which requires
expansive computational and bioinformatics expertise and resources, and impacts
cost and turnaround time for reporting results [44]. Furthermore, the limited
understanding of noncoding regions of the genome raises questions as to the bio-
logical ramifications and current clinical utility of the additional alterations detected
by WGS.

While WGS is leveraged primarily in the research setting, there are emerging
reports applying clinical WGS in cancer. Laskin et al. performed CAP-accredited
WGS for 100 patients with advanced cancer as part of a personalized oncogenomics
study [45]. Of the 78 patients for which WGS testing was completed, 55 patients
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received actionable results and 23 patients (42%) were treated based on these
results. Of note, 61% (14/23) of these patients showed clinical or radiographic
improvement on the genomics-informed treatment regimen. Together, these results
showed WGS is feasible for use in personalized medicine trials. Another recent
study out of the UK reported results from eight advanced cancer patients enrolled
on a clinical WGS study [46]. WGS analysis resulted in the identification of
potential treatment options for all eight patients, clarification of a diagnosis for one
patient, and de-escalation of therapy for one patient. Of note, the authors reported
that clinical WGS resulted in the identification of more potentially actionable
variants compared to typical targeted NGS, suggesting the potential for these more
comprehensive sequencing assays to expand the catalog of variants detected to
support clinical decision-making.

5.2.4 Additional Considerations and Applications

Clinical genomics applications can include various types of patient-derived input
material, such as fresh tissue, FFPE tissue, bone marrow aspirate, fine-needle
aspirates, and peripheral blood. The inclusion of a “normal” non-malignant con-
stitutional DNA sample for paired tumor-normal analysis is important for the
comprehensive WES and WGS assays, and is common for many large sequencing
panels, allowing for the identification of true somatic variants.

NGS techniques are also being applied to the detection of cell-free tumor DNA
(cfDNA) or RNA (cfRNA). These “liquid biopsy” applications provide a less invasive
strategy for genomic analysis. These assays allow the detection of somatic genomic
alterations in the circulation for tumors that are inaccessible for a tissue biopsy, and
can also be used for monitoring disease burden, treatment response, and development
of therapy resistance through serial sampling [47]. cfDNA assays can be targeted,
measuring specific known mutations relevant to cancer care. In 2016, the FDA
approved the first liquid biopsy test, cobas EGFR Mutation Test v2, which measures
targeted EGFR mutations from plasma samples as a companion diagnostic test for
lung cancer [48]. In addition to single gene testing, cfDNAcan also be evaluated using
multi-gene NGS panels [49]. In 2018, the FDA granted Breakthrough Device des-
ignation to multi-gene panels from Foundation Medicine and Personal Genome
Diagnostics, and Expedited Access Pathway designation to Guardant Health’s
multi-gene Guardant360 liquid biopsy assay. These approvals represent promising
initial steps toward broader clinical use of cfDNA measurements in oncology [50].

5.3 Genomics-Enabled Medicine for Cancer Diagnosis

In concert with anatomic pathology, molecular diagnostics, including genomic
characterization of a tumor, can aid in clinical diagnosis. Genomic profiling can be
used to identify molecular markers of malignancy and thus aid in disease
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classification and clinical decision-making (Table 5.2). For example, though thy-
roid nodules are common, less than 10% represent malignant tumors. Fine-needle
aspiration cytology is a widely used diagnostic tool to identify patients at risk of
malignancy that should undergo surgery. However, in 15–30% of cases the
cytology results are indeterminant. Previously, these patients underwent diagnostic
thyroid surgery, with a majority found to have benign disease. Molecular testing,
together with clinical and ultrasound features, has shown promise in classifying
these indeterminant nodules. By identifying common mutations associated with
thyroid cancer, such as BRAF mutations, molecular testing can be used to stratify
patients for surgery or surveillance [51]. For example, the ThyroSeq v3 assay uses
DNA and RNA sequencing to measure mutations, copy number events, fusions,
and gene expression changes that are together used to classify samples as malignant
or benign [52]. Thus, genomic testing can be used as an adjunct test for clinical
cancer diagnosis, particularly in the context of indeterminant malignant classifica-
tions, and may help identify patients with benign nodules that can circumvent
surgery.

Table 5.2 Use of genomic profiling in cancer diagnosis, prognosis, and treatment

Diagnosis Prognosis Treatment

Genomic profiling can aid in
cancer diagnosis
• Adjunct test for
indeterminant disease
(distinguishing malignant
from benign disease)

• Detection of
pathognomonic genomic
alterations for accurate
diagnosis, as well as for
potential use in early
cancer detection

• Molecular subclassification
of tumors, distinguishing
disease subgroups with
distinct clinical trajectories

• Cancers of unknown
primary

Genomic alterations for risk
assessment and to identify
which patients are most and
least likely to benefit from
more aggressive therapy
• Transcriptome profiles
• Single gene measures
(MYCN amplification,
TP53 mutation, etc.)

• Genomic features (17p
deletion, dMMR)

• Noncoding variants (TERT
promoter mutations)

Detection of genomic
alterations that can inform
treatment strategies
• Alterations in drug targets
that confer drug sensitivity
or resistance

• Alterations in pathway
modifiers that confer drug
sensitivity or resistance

• Alterations in genes that
induce drug sensitivity
through synthetic lethal
interactions

• Broader genomic features
associated with drug
response (MSI, dMMR,
mutational burden)

• Germline variants that
influence drug
pharmacokinetics or
pharmacodynamics,
including polymorphisms
associated with drug
toxicity and biomarkers of
drug sensitivity

MYCN MYCN proto-oncogene, BHLH transcription factor; TP53 tumor protein 53; dMMR
mismatch repair deficiency; TERT telomerase reverse transcriptase; MSI microsatellite instability
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Understanding the genomic features of a tumor can also assist in cancer diag-
nosis through the identification of pathognomonic genomic alteration. Several
tumor types, particularly rare tumors, are characterized by pathognomonic genomic
events [53]. For example, Ewing’s sarcoma is characterized by a pathognomonic
reciprocal chromosomal translocation involving EWS and an ETS transcription
factor, typically FLI1. The EWS-FLI1 fusion protein is found in more than 80% of
Ewing’s sarcoma tumors [54]. Additional examples of characteristic pathog-
nomonic alterations include gastrointestinal stromal tumors (KIT or PDGFRA
mutations) [55, 56], hairy cell leukemia (BRAF V600E mutation) [57], small cell
carcinoma of the ovary hypercalcemic type (SMARCA4 mutations) [58–60], and
granulosa cell tumors of the ovary (FOXL2 C134W mutation) [61].

Genomic features have also contributed to the ongoing refinement of the
molecular classification of tumors. The 2016 World Health Organization
(WHO) classification of central nervous system (CNS) tumors provides a prime
example of the shift toward incorporating molecular features with tumor histology
for disease classification and diagnosis. Here, molecular features including copy
number state (i.e., codeletion of chromosomal arms 1p and 19q), mutation status
(i.e., IDH1/IDH2, TP53, H3 K27M mutations), and fusion detection (i.e., RELA
fusion positive) are used to molecularly classify CNS tumors [62]. Genomic fea-
tures also provide value in molecularly classifying tumor subgroups, which can be
clinically relevant for distinguishing subgroups with distinct disease trajectories and
treatment approaches. In rhabdomyosarcoma (RMS), the identification of
PAX-FOXO gene translocations led to the reclassification into fusion positive and
fusion negative RMS, which have distinct clinical and histological profiles [63].
Genomic profiling also allows the identification and classification of tumors with
shared characteristic genomic features. For example, mutations and deletions of
members of the SWI/SNF chromatin remodeling complex (SMARCA4/SMARCA2/
SMARCB1) have been identified in multiple tumor types [58–60, 64–68]. Efforts are
underway to evaluate treatment approaches collectively within these
“SWI/SNF-omas” [69].

Genomic profiling may also have diagnostic utility for metastatic carcinoma of
unknown primary (CUP) site. Each year, more than 30,000 patients receive a CUP
diagnosis [70]. The diagnostic workup for CUP leverages molecular testing, though
this testing is typically focused on immunohistochemical (IHC) analysis [71, 72].
CUP is a difficult to treat malignancy that has historically been managed as a single
disease, with patients typically treated using platinum-based chemotherapy.
Potential applications for genomic profiling in CUP management are emerging,
including growing interest in using genomic profiling to identify potential treatment
options and improve outcomes for these patients [70, 73, 74]. A recent study used
NGS to evaluate 236 cancer-related genes in 200 CUP tumor samples and found
85% of CUP tumors had at least one clinically actionable genomic alteration
detected [70]. Similarly, Gatalica et al. reported results from a multi-platform study
using sequencing, in situ hybridization, and IHC analysis for over 1800 CUP
tumors, where a biomarker associated with potential drug response was identified in
over 90% of tumors [75].
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5.4 Genomics-Enabled Medicine for Cancer Prognosis

Prognostic biomarkers are used at the time of diagnosis to identify individuals at a
higher risk of a future clinical event, including disease recurrence, tumor pro-
gression, and death, independent of therapy. Traditional prognostic biomarkers in
oncology include features such as tumor size, lymph node positivity, and metas-
tasis. Genomic information is increasingly being used, together with clinical and
pathologic prognostic factors, to improve prognostication (Table 5.2).

Various molecular profiling assays have demonstrated clinical utility and are
used in routine practice to provide prognostic information [76]. In breast cancer,
multi-gene transcriptome assays are routinely used to identify patients who are most
and least likely to benefit from adjuvant chemotherapy. For example, the Oncotype
Dx 21-gene recurrence score has been prospectively validated to identify patients
with lymph node-negative, hormone receptor-positive breast cancer with a favor-
able prognosis and low risk of recurrence, such that endocrine therapy alone is
sufficient and chemotherapy is unlikely to provide additional clinical benefit [77]. In
addition to the recurrence score, the American Society of Clinical Oncology has
also recently supported the use of additional prognostic profiles in breast cancer,
including EndoPredict, predictor analysis of microarray 50, and the Breast Cancer
Index. Prognostic profiles are also being developed and used in other tumor types,
including colorectal cancer, prostate cancer, lung cancer, and melanoma [78–81].

Individual genomic alterations can also be leveraged as prognostic biomarkers.
For example, in neuroblastoma, molecular and cytogenetic features are used for risk
assessment and to guide treatment recommendations. MYCN amplification is
associated with poor prognosis and is used to identify patients with high-risk dis-
ease, irrespective of patient age or localized versus metastatic disease at diagnosis
[82]. In addition to MYCN amplification, DNA ploidy and segmental chromosomal
alterations (such as loss of heterozygosity on 11q) have also been incorporated into
the International Neuroblastoma Risk Group classification system [82].

Broader genomic features can also serve as prognostic biomarkers. In localized
colorectal cancer, mismatch repair (MMR) deficiency is associated with longer
survival compared to MMR proficient tumors [83, 84]. MMR deficiency is asso-
ciated with a high number of DNA replication errors and is characterized by high
levels of microsatellite instability (MSI). MSI status is considered a clinically
significant prognostic factor, and MSI or MMR deficiency evaluation is recom-
mended during colorectal cancer staging [85].

The utility of genomic information for prognostication is well illustrated by its
use in hematological malignancies. Genomic abnormalities are used to classify
acute myeloid leukemia (AML) into distinct risk groups. NPM1 mutations and
biallelic CEBPA mutations are associated with favorable prognosis, whereas
internal tandem duplication in FLT3 (FLT3-ITD), or RUNX1, ASXL1, or TP53
mutations is associated with adverse risk [86]. Molecular genetic testing is also
routinely performed in chronic lymphocytic leukemia (CLL), where specific
cytogenetic abnormalities are associated with favorable (del(13q) or trisomy 12) or
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unfavorable (del(17p) or del(11q)) prognosis [87]. Unmutated IGHV is associated
with poor prognosis and worse survival outcomes in CLL, irrespective of disease
stage [88, 89]. TP53 mutation status and chromosome 17p deletions are also
important prognostic markers in CLL, with TP53 mutation and/or 17p deletion
associated with more rapid disease progression and poor outcomes. Recent prog-
nostic models, such as the CLL international prognostic index (CLL-IPI), are
incorporating these genomic features with classical clinical parameters. In the
CLL-IPI, TP53 mutation and/or 17p deletion showed the greatest adverse associ-
ation with overall survival [90]. Notably, though these patients historically
demonstrated resistance to the standard fludarabine-based chemotherapy, recent
clinical trials have shown that patients with TP53 mutations or 17p deletion respond
well to newer agents, including the B-cell receptor inhibitor, ibrutinib, and the
BCL2 pathway inhibitor, venetoclax [91]. Ibrutinib and venetoclax are now
FDA-approved for CLL patients with 17p deletions [92].

5.5 Genomics-Enabled Medicine for Cancer Treatment

Genomic profiling can also be used to identify key oncogenic drivers or genomic
vulnerabilities that can be targeted with a therapeutic agent (Table 5.2). Genetically
driven tumor dependencies have been identified and successfully targeted in various
tumor types, including CML, melanoma, lung cancer, and breast cancer [8–11,
93–95]. In each of these examples, a specific genomic alteration has been associated
with improved response to a molecularly targeted agent, and tests to detect these
alterations have been developed as companion diagnostics for the FDA-approved
therapy. The current FDA-approved companion diagnostic tests are listed on the
FDAWeb site (http://www.fda.gov/medicaldevices/productsandmedicalprocedures/
invitrodiagnostics/ucm301431.htm). Together, the current companion diagnostic
tests in oncology measure a broad spectrum of therapeutically informative genomic
alteration types, including gene fusions, point mutations, and copy number events, as
described in the examples below (Table 5.3).

5.5.1 Therapeutically Informative Translocations
and Fusions

Structural rearrangements leading to gene fusions are a key area of focus in pre-
cision oncology. Targeting these constitutively active fusion proteins can lead to
dramatic clinical responses and transform clinical management, as exemplified by
targeting of BCR–ABL fusions in chronic myeloid leukemia (CML) [96]. BCR–
ABL gene fusion results from a reciprocal translocation involving chromosomes 9
and 22 producing the Philadelphia chromosome. The BCR–ABL fusion is found in
95% of CML, and the introduction of agents that inhibit this gene fusion, such as
imatinib and nilotinib, dramatically improved overall survival for patients with this
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Table 5.3 Selected examples of genomic alterations used to inform cancer treatment

Types of genomic
alterations

Examples of applications to inform cancer treatment

Alteration Tumor type Clinical use

Gene fusions BCR–ABL fusion Chronic myelogenous
leukemia

Informs treatment with
BCR–ABL inhibitors

ALK fusions Lung cancer Informs treatment with ALK
inhibitors

ROS1 fusions Lung cancer Informs treatment with
ROS1 inhibitors

NTRK fusions Tumor-type agnostic—
solid tumors

Informs treatment with TRK
inhibitor

Single-nucleotide
variants

EGFR mutations
(L858R, T790M,
exon 19
deletions, etc.)

Lung cancer Targeted companion
diagnostic tests for tissue or
liquid biopsies to detect
sensitive or resistant
mutations to inform
treatment with EGFR
inhibitor

BRAF V600E Melanoma Informs treatment with a
BRAF V600E inhibitor and
MEK inhibitor

KRAS or NRAS
mutations (exons
2, 3, 4)

Colorectal cancer RAS mutations are
associated with resistance to
EGFR inhibitors; RAS
mutation status is typically
measured in metastatic
colorectal cancer patients for
whom EGFR inhibitor
treatment is being considered

BRCA1 or
BRCA2
mutations

Ovarian cancer Informs treatment with
PARP inhibitors

Copy number
alterations

ERBB2 Breast cancer, gastric
adenocarcinoma,
esophagogastric junction
adenocarcinoma

Amplification of ERBB2
(HER2) defines a subgroup
of HER2-positive breast
cancer and is used to guide
treatment with ERBB2
inhibitors in this patient
population

Other genomic
features

Microsatellite
instability

Tumor-type agnostic—
solid tumors

Inform treatment with
immune checkpoint
inhibitors

Mismatch repair
deficiency

Tumor-type agnostic—
solid tumors

Inform treatment with
immune checkpoint
inhibitors
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disease such that life expectancy is now approaching that is seen in the non-CML
population [96–100].

Building on the landmark success of inhibiting BCR–ABL in CML, chromo-
somal translocations and gene fusions have now been identified in a wide range of
tumor types, including epithelial cancers, brain tumors, sarcomas, and hemato-
logical malignancies [101–103]. The catalog of potentially actionable gene fusions
is growing, as is the evidence for clinical benefit from targeting these fusions [4,
104–106].

Several companion diagnostic tests have been approved for the detection of
therapeutically relevant translocations and fusions. For example, translocations
involving anaplastic lymphoma kinase (ALK) occur in 3–5% of NSCLC.
EML4-ALK represents the most common ALK fusion in lung cancer, though several
other fusion partners for ALK have been identified [107]. Current guidelines rec-
ommend ALK testing for patients with advanced NSCLC [108, 109]. ALK inhibi-
tors, such as crizotinib, ceritinib, and alectinib, have demonstrated clinical activity in
ALK-rearranged NSCLC and are considered first-line therapy in this setting [110,
111]. In addition, ROS1 fusions are found in 1–2% of NSCLC [112], as well as in
other tumor types (glioblastoma, cholangiocarcinoma, angiosarcoma, and others
[113]). ROS1 fusions result from a translocation between ROS1 and an expanding
roster of fusion partners, most commonly CD74 [112, 113]. The ALK inhibitor,
crizotinib, has shown clinical activity in ROS1-rearranged NSCLC [93] and was
approved by the FDA in 2016 for use in this genomically defined patient population.

There is a growing movement toward treating fusion positive tumors with tar-
geted inhibitors regardless of the tissue of origin. FGFR inhibitors have shown
activity in various FGFR fusion positive tumors, including cholangiocarcinoma,
bladder cancer, and gliomas [114]. Another emerging example is the detection of
NTRK fusions, where one of the three NTRK genes (NTRK1, NTRK2, and NTRK3)
is fused with one of over 50 different fusion partners [115]. NTRK fusions occur at
low prevalence overall in cancer, but have been reported in multiple adult and
pediatric tumor types. Inhibitors with activity against NTRK have shown promising
results in clinical trials [116, 117]. Recent trials with larotrectinib, an NTRK1/2/3
inhibitor, reported an overall response rate of 75% in adults and children with
NTRK fusion positive tumors [117]. Notably, 17 different tumor types were rep-
resented on the study, supporting a tumor agnostic approach to treating NTRK
fusion tumors. Larotrectinib was recently approved by the FDA for use in NTRK
fusion-positive solid tumors.

5.5.2 Therapeutically Informative Mutations

Single-nucleotide variants represent a common mechanism of genomic alteration in
cancer. These alterations can contribute to a molecular context of the therapeutic
vulnerability, either as direct targets for molecularly guided inhibitors or due to
resulting pathway activation or synthetic lethal interactions. Specific examples are
described below.
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In lung cancer, multiple therapeutically informative biomarkers have been
identified and validated and are now evaluated as part of standard clinical care to
determine the therapeutic course. In addition to the ALK translocations described
above, roughly 15–20% of NSCLCs in the USA contain activating mutations in
EGFR, most frequently deletions in exon 19 or the L858R mutation in exon 21.
Treatment with an EGFR tyrosine kinase inhibitor as first-line therapy, second-line
therapy, or as maintenance therapy is associated with prolonged progression-free
survival in NSCLC patients with EGFR mutations [118]. EGFR variants can be
detected by various NGS tests, including companion diagnostic tests that detect
specific EGFR mutations (L858R, T790M, exon 19 deletions) in tumor samples or
in liquid biopsies, as well as broader NGS tests that measure across the coding
region of EGFR.

BRAF is a serine/threonine protein kinase that activates the MAPK pathway.
BRAF mutations are present in 40–60% of advanced cutaneous melanomas, with
nearly 90% of these mutations representing the hotspot activating BRAF V600E
mutation [119]. The BRAF V600E-targeted inhibitor, vemurafenib, was the first of
several targeted agents to show improved survival for patients with BRAF V600E
mutant metastatic melanoma [11, 120, 121]. Single-agent inhibition has largely
been replaced by multi-targeted pathway inhibition, combining a BRAF inhibitor
(vemurafenib, dabrafenib) and a downstream MEK inhibitor (trametinib, cobime-
tinib) to prolong disease control [121–124]. Though BRAF V600E is used as a
biomarker for BRAF/MEK inhibitor response in melanoma, these agents have
shown mixed responses in other BRAF V600E mutant tumor types [125],
demonstrating the importance of considering genomic features in the context of the
tumor type as well as the genomic landscape of the tumor.

Genomics features can also provide information about which treatments may not
be effective for a patient. In colorectal cancer, KRAS/NRAS mutation status is
routinely measured prior to treatment with the upstream EGFR monoclonal anti-
bodies, cetuximab and panitumumab. Roughly one-third of metastatic colorectal
tumors carry KRAS or NRAS mutations, and RAS mutations have been shown to
confer resistance to EGFR inhibitors [126–128]. Current treatment guidelines
recommend KRAS and NRAS testing (exons 2, 3, and 4) for patients being con-
sidered as candidates for EGFR inhibitors [129].

5.5.3 Therapeutically Informative Copy Number Alterations

Genomic amplifications and deletions can also be therapeutically informative. In
breast cancer, ERBB2 (HER2) amplification is seen in *15–20% of breast cancers
[130], and HER2 testing is recommended for all patients with invasive breast cancer
[131]. Various ERBB inhibitors have now been approved for use in HER2-positive
metastatic breast cancer, including monoclonal antibodies targeting ERBB2 (tras-
tuzumab, pertuzumab), antibody-drug conjugates (trastuzumab emtansine), and
tyrosine kinase inhibitors with activity against ERBB2 (lapatinib, neratinib). Dual
ERBB2 inhibitor treatment has shown increased efficacy in recent clinical trials in
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HER2-positive metastatic breast cancer [132]. Trastuzumab has also been approved
for use in patients with HER2-positive metastatic gastric or esophagogastric junction
adenocarcinomas and, in combination with chemotherapy, is considered the standard
first-line treatment for HER2-positive advanced esophagogastric cancer [133].

5.5.4 Other Genomic Features

5.5.4.1 Noncoding Variants
Noncoding variants are alterations in regions outside the coding exons of the
genome. These noncoding elements include intronic regions and regulatory regions,
such as gene enhancers, promoters, and untranslated regions (UTRs). The landscape
of noncoding variants in cancer is less well characterized compared to
protein-coding variants. However, the identification and characterization of clini-
cally relevant noncoding alterations are emerging.

One of the most well-characterized noncoding driver alterations in cancer is a
recurrent mutation in the TERT promoter. TERT encodes the catalytic subunit of
telomerase, an enzyme involved in maintaining telomere length of chromosomes.
Telomerase activation is a hallmark of cancer [134]. Recurrent hotspot mutations in
the TERT promoter (C228T, C250T) have been shown to modulate TERT activity
by increasing TERT expression via the creation of novel ETS family transcription
factor binding sites [135]. Originally reported as a causal germline variant in a large
melanoma pedigree, somatic TERT promoter mutations have also been reported in
71% of cutaneous melanomas [136] and in over 40 other cancer types [22, 137],
including frequent mutations in glioblastoma, bladder cancer, and thyroid cancer
[138–141]. TERT promoter mutations have been associated with more aggressive
disease and worse outcome in various tumor types [142–146]. TERT promoter
mutations can be identified using next-generation sequencing assays, including
targeted TERT promoter sequencing analysis, exome panels and whole exome
sequencing assays covering the TERT promoter region, and whole genome
sequencing assays. TERT promoter analysis is included on several clinically
available targeted exome panels. In the largest pan-cancer analysis of TERT pro-
moter mutations to date, Zehir et al. recently reported the detection of TERT pro-
moter mutations in 43 different tumor types based on prospective clinical exome
panel sequencing of over 10,000 advanced cancer patients using the
MSK-IMPACT panel [22]. Bladder cancer, glioma, thyroid cancer, and melanoma
showed the highest frequency of TERT promoter mutations, with a trend for shorter
survival for patients with TERT mutant tumors.

Additional clinically informative noncoding variants are likely to emerge with
ongoing efforts by the research community to identify and characterize the func-
tional implications of changes in the noncoding regions of the genome.

5.5.4.2 Microsatellite Instability Status
Microsatellite instability (MSI) is a hypermutability phenotype characterized by
increased or decreased length of short nucleotide (microsatellite) repeats that result
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from defects in DNA mismatch repair activity. The failure to repair errors leads to a
high number of somatic mutations, particularly in repetitive sequences. MSI is
frequently seen in tumors associated with Lynch syndrome, a cancer predisposition
disorder characterized by germline alterations in mismatch repair genes.

Importantly, MSI status has demonstrated utility as a predictive biomarker for
anti-programmed cell death (PD-1) monoclonal antibody immune checkpoint
inhibitor response [147–149]. In 2017, the FDA granted tumor agnostic approval
for use of the anti-PD-1 immune checkpoint inhibitor, pembrolizumab, in treatment
of pediatric or adult patients with unresectable or metastatic solid tumors that are
MSI-high or DNA mismatch repair deficient. This approval was a historical
advancement as it represented the first approval for a cancer treatment that was not
based on tumor type, but instead was based on the presence of a unifying genomic
biomarker [150]. Notably, pembrolizumab had previously received approval for use
in multiple tumor types, including melanoma, NSCLC, head and neck squamous
cell carcinoma, and urothelial carcinoma.

Traditionally, MSI status is determined by immunohistochemistry to evaluate
MMR protein expression or using polymerase chain reaction (PCR) analysis of a
panel of five core microsatellite markers, where tumors are classified as MSI-high if
two or more markers show instability [151]. Given the clinical importance of
identifying MSI-high tumors for potential immune checkpoint inhibitor treatment,
there has been strong interest in reporting MSI status from genomic sequencing
results. Vanderwalde et al. retrospectively analyzed over 2000 tumors with MSI
testing performed by exome panel sequencing and by the standard PCR methods.
The authors reported a high concordance with PCR-based results [152]. Current
clinical guidelines have recommended MSI testing for colon and endometrial
cancer patients. With tumor agnostic approval of pembrolizumab for MSI-high
tumors, there is a growing move toward providing MSI testing for all patients with
advanced solid tumors that lack treatment options. The ability to measure MSI
status from exome-based sequencing assays provides a promising avenue for
clinicians to access this information without a need for extra tumor tissue or
molecular testing. Indeed, the catalog of tumor types impacted by MSI is
expanding, with several recent large-scale profiling studies suggesting MSI is a
more generalized cancer phenotype that has been detected in more than 20 different
tumor types [22, 153, 154].

5.5.4.3 Mutational Burden
Mutational burden is a quantitative measure representing the total number of
mutations detected within the coding area of the tumor genome, typically expressed
as mutations per megabase (mut/Mb). Elevated mutational burden can reflect an
underlying DNA repair defect in the tumor. Germline or somatic mutations in DNA
mismatch repair genes (MSH2, MSH6, PMS2) as well as DNA replication genes
(POLE, POLD1) have been associated with tumor hypermutation [155–159].

Mutational burden can be measured from targeted exome, whole exome, or
whole genome platforms. The Cancer Genome Atlas (TCGA) project measured
tumor mutational burden using whole exome sequencing data from *30 tumor
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types and found a range of mutational burdens both within and across tumor types
[5]. Tumor types associated with mutagen exposure, such as melanoma and lung
cancer, showed the highest median number of somatic mutations, whereas pediatric
tumors, such as pilocytic astrocytoma and medulloblastoma, showed the lowest
number of somatic mutations. Notably, hypermutated tumors, defined as those with
>10 mut/Mb, were identified in a majority of tumor types. Chalmers et al. also
recently reported mutational burden analysis from targeted exome panel data across
>100,000 tumors representing 167 tumor types [160]. In addition to identifying
additional tumor types with the high mutational burden, their analysis found
individual tumors with high mutational burden in nearly all tumor types evaluated.
Thirty-eight different tumor types were identified where more than 5% of patients
had high mutational burden tumors. A hypermutated genotype can also arise due to
treatment-induced changes, as has been reported for a subset of
temozolomide-treated glioblastomas [161]. The emergence of this genomic feature
during a patient’s treatment course provides a rationale for repeat genomic testing
of the tumor at recurrence/relapse when possible.

High mutational burden has been associated with improved response to immune
checkpoint inhibitors in multiple tumor types, including melanoma, lung cancer,
and mismatch repair deficient tumors [33, 147, 148, 162, 163]. The FDA recently
provided tumor agnostic approval for pembrolizumab in pediatric and adult tumors
with mismatch repair deficiency [150].

5.5.5 Emerging Applications

In addition to validated genomic biomarkers used in companion diagnostics,
genomic information may be useful for identifying potential treatment options
beyond the standard of care, either as an off-label use of an FDA-approved agent or
for informing eligibility for a clinical trial (www.clinicaltrials.gov). The Bisgrove
study provided an initial proof of principle that molecular profiling could improve
patient outcomes. This prospective clinical trial used immunohistochemistry and
gene expression profiling to inform treatment selection for 66 patients with
advanced, treatment-refractory cancers. By comparing the time to progression on
the molecularly guided treatment to the time to progression on the patient’s pre-
vious therapy, the authors demonstrated that 27% of the patients benefited from the
molecularly informed treatment (measured as a PFS ratio greater than or equal to
1.3) [164]. In 2012, the MD Anderson Cancer Center reported results from a phase
1 program using molecular profiling to guide treatment selection, where they found
that advanced cancer patients treated with a molecularly guided therapy had higher
response rates, longer time-to-treatment failure, and longer survival than patients
who were not treated with a matched therapy [165]. Additional non-randomized
studies have also shown increased response rates for patients enrolled on
genomics-guided clinical trials [166]. In contrast, the SHIVA trial found no benefit
for molecularly matched therapy compared to physician’s choice in a prospective,
randomized phase 2 study in heavily pretreated advanced cancer patients [167],

5 Genomics-Enabled Precision Medicine for Cancer 153



though only three molecular pathways were used to assign patients to treatment
with one of ten targeted agents.

Various clinical trials are underway testing the efficacy of more broadly using
genomics to inform treatment. The recent MOSCATO 01 trial showed that
genomics-guided therapy can improve patient outcome when the biomarker–drug
pairs are well characterized and supported by strong clinical or preclinical evidence
[168]. This prospective clinical trial used next-generation sequencing (including
WES) and RNA sequencing to profile more than 800 patients with advanced cancer.
Nearly half of the patients had an actionable alteration identified, with one-third of
patients showing improved progression-free survival with the genomics-informed
therapy compared to prior treatment. Several additional large-scale clinical trials are
underway that aim to evaluate the utility of genomic profiling for adult and pediatric
cancer patients (e.g., NCI-MATCH, ASCO TAPUR, INFORM2, ESMART) [169].
For example, the NCI Molecular Analysis for Therapeutic Choice (NCI-MATCH)
trial is a basket trial that matches patients with recurrent or refractory solid tumors
to a selected subset of molecularly targeted agents based on pre-defined drug–target
pairs, regardless of the tumor type [170]. Reports from exceptional responders, as
well as non-responders, can also be used to identify potential genomic alterations
that are associated with treatment response and can guide future clinical trial
designs [31, 171–175]. The US National Cancer Institute (NCI) launched an
Exceptional Responders Initiative to retrospectively perform whole exome and
RNA sequencing analysis to evaluate genomic markers in patients with exceptional,
durable responses to therapy [176]. This study has met its accrual goal of 100
patients, and molecular analysis is ongoing (https://www.cancer.gov/about-cancer/
treatment/research/exceptional-responders-initiative-qa).

One of the challenges with more widespread adoption of genomic profiling to
guide patient treatment is the need for consistent interpretation of genomic variants
and potential therapeutic associations, particularly for the many variants of uncer-
tain significance that are detected with more comprehensive genomic profiling
strategies [177, 178]. Expert curation of evidence for variant pathogenicity and
variant–drug associations is needed. While many groups have developed their own
internal frameworks and databases for variant reporting, a consensus on action-
ability does not currently exist [177], and there is a need for harmonized effort and
agreement for consistent reporting in the clinical context. Ongoing efforts are
focused on developing resources and guidelines for variant interpretation and
variant–drug associations [179].

5.6 Germline Considerations

5.6.1 Clinically Actionable Germline Variants

Large-scale sequencing studies suggest the presence of pathogenic,
cancer-associated germline variants in *7–10% of pediatric and adult cancer
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patients [6, 180–182]. Germline genetic testing is recommended for high-risk
individuals where the results will impact the patient’s medical management, with
genetic counseling recommended both prior to and after genetic testing. This
includes patients with a family history that is multi-generational or early onset, or in
cases informed by the clinical presentation, such as the presence of multiple tumor
types in the same patient or of bilateral disease. However, testing based on current
guidelines may miss the evaluation of clinically informative germline variants in an
additional subset of patients. Interrogation of existing tumor-normal paired
sequencing data for patients with advanced cancer revealed informative germline
variants in 17.5% of patients (182/1040), where over half of these patients
(101/182, 55%) would not have had germline testing performed based on guidelines
[183]. Results such as these encourage continued discussion around the utility and
challenges of expanding germline testing in oncology.

Importantly, in addition to cancer risk, germline variants can also inform treat-
ment options. The pinnacle example of this association is the link between
pathogenic germline BRCA1/2 mutations and increased sensitivity to PARP inhi-
bitors [184]. PARP inhibitors are FDA-approved for use in germline
BRCA-mutated advanced ovarian cancers and breast cancers [185–187] and are
being evaluated for use in other solid tumors [188].

There are also emerging examples of germline variants in DNA repair genes
associated with increased response to immune checkpoint inhibitors. For example,
two siblings with germline biallelic mismatch repair deficiency (BMMRD), a
pediatric cancer syndrome associated with hypermutated tumors, developed
recurrent glioblastoma tumors and showed clinical responses to the anti-PD1
immune checkpoint inhibitor, nivolumab [155]. POLE mutations have also been
associated with increased response to immune checkpoint inhibitors. POLE is a
DNA polymerase involved in DNA replication and repair. Germline and somatic
mutations in the exonuclease domain of POLE have been reported in various tumor
types and associated with a hypermutant genotype [189, 190]. There are a growing
number of reports demonstrating response to PD1 inhibitors in patients with
germline POLE mutations and hypermutated tumors, including in colorectal cancer,
glioblastoma, and endometrial cancer [156–159].

5.6.2 Germline Pharmacogenomics in Oncology

Germline variants can also provide valuable pharmacogenomic information that can
be leveraged to avoid or minimize treatment toxicity. Single-nucleotide polymor-
phisms in drug-metabolizing enzymes have been identified that are associated with
increased risk for toxicity with the standard drug dosing. In oncology, several
agents have germline pharmacogenomics recommendations included in their drug
labels, including capecitabine, fluorouracil, irinotecan, 6-mercaptopurine, and
thioguanine. The Clinical Pharmacogenetics Implementation Consortium (CPIC)
has also released guidelines for fluoropyrimidines (capecitabine/5-fluorouracil),
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mercaptopurine/thioguanine, and tamoxifen [191–193]. Selected examples are
discussed below.

It is estimated that 3–5% of Caucasians carry non-functional variants of DYPD, a
gene that encodes the dihydropyrimidine dehydrogenase (DPD) enzyme involved in
the rate-limiting step in fluoropyrimidine metabolism. These individuals are at
increased risk for capecitabine/5-fluorouracil toxicity. The CPIC recommends
genomics-informed dosing, with dose reduction for patients with partial DPD
activity, and alternative therapy for those considered poor metabolizers [191].
Irinotecan represents another potential application for pharmacogenomics testing in
oncology. Clearance of irinotecan involves metabolite inactivation by
UDP-glucuronosyltransferase 1A1 (UGT1A1)-mediated glucuronidation. Individ-
uals that are homozygous for the reduced function UGT1A1 polymorphism,
UGT1A1*28, are at an increased risk for life-threatening neutropenia at the stan-
dard doses of irinotecan. Irinotecan should be used with caution in these patients
with reduced UGT1A1 activity. Similarly, 6-mercaptopurine and thioguanine are
inactivated by the enzyme thiopurine methyltransferase (TPMT). Individuals with
very low TPMT activity due to reduced function polymorphisms can experience
severe bone marrow toxicity on the standard doses of 6-mercaptopurine or
thioguanine therapy. TPMT testing is recommended for individuals being treated
with these agents, as individuals can be offered reduced dosing based on the
presence of one or two non-functional TPMT alleles [192]. Additional pharma-
cogenomics markers for oncology agents are also being explored [194].

Despite genotype-driven dosing guidelines, upfront pharmacogenomic screening
is not universally performed prior to starting these treatments. Further effort is
needed to explore more widespread adoption of these tests and to evaluate
opportunities to incorporate relevant pharmacogenomic profiling and reporting into
current NGS platforms.

5.7 Conclusions

Cancer genomic testing has become more widely available in community hospitals
and academic cancer centers and through commercial testing laboratories. The
expanding knowledge and application of genomic profiling are anticipated to
improve cancer diagnosis, risk stratification, and treatment selection. While early
studies have focused on patients with rare tumors that lack standard of care treat-
ment options and patients with advanced cancer that have failed standard of care
treatments, responses seen in these patient populations have opened up opportu-
nities to apply this information earlier in the treatment course, as exemplified by the
current clinical management of NSCLC. It is anticipated that continued advances in
the era of modern genomics-enabled medicine will expand its application to a
broader spectrum on oncology patients.
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6.1 Introduction

One of the major pillars of precision oncology is that a tumor-based molecular
profile serves as the rationale for patient-tailored and targeted therapy selection.
Currently, this molecularly based treatment matching has largely been based on
genomics-centered analysis using either targeted exome panels, whole genome
sequencing, and/or RNA sequencing comprising the molecular landscape consid-
ered. Certainly stratification and selection of patients for certain targeted therapies
based on genomics analysis has certainly been successful with FDA-approved
companion diagnostic assays and therapies such as for non-small cell lung cancer
(NSCLC) where EGFR gene mutations [1], ROS/ALK gene translocations [2],
HER2 amplification in breast cancer [3], and BRAFV600E mutations in melanoma
[4] are highly predictive for therapeutic response.

However, these genomics-based approaches are imperfect and often times show
little to no predictive value [5, 6], and of course not every NSCLC patient that
harbors an EGFR mutation responds to EGFR-directed therapy, not every HER2+
breast cancer responds to Herceptin™. Genomic analysis alone is unable to com-
pletely explain all targeted therapeutic response even in an enriched population and
misses patients who respond to a targeted therapy without the genomic alteration.
Cancer is certainly causally determined by specific genomic derangements, but in
fact cancer is a proteomic disease. More practically, the mechanism of action of
many targeted precision therapies works by binding to and modulating protein
enzymatic level (e.g., kinase inhibitors). Consequently, there is a growing and
urgent need to develop new methodologies that measure not just the amount of a
protein drug target but its “in-use” or activated state.

6.2 Cancer Is a Disease of the Protein “Circuitry”

Dysfunctional protein signaling networks play a central role in tumorigenesis and
metastatic progression [7–14]. However, it is not necessarily the total expression
levels of a protein that may control key biochemical processes but the posttrans-
lational modifications such as phosphorylation that often play the dominant role in
orchestrating and regulating cell signaling processes and those deranged in the
tumorigenic processes.

Protein phosphorylation controls protein signaling largely through SH2 and SH3
protein–protein interactions [13–27] with the majority of protein phosphorylation
occurring on serine and threonine residues with the remainder (approximately 10%)
occurring on tyrosine residues. A large number of receptor tyrosine kinases
(RTK) are the targets for clinically used anticancer therapeutics (e.g., EGFR,
VEGFR, ROS, HER2 MET, KIT, PDGFR, ALK) that are themselves kinase
enzymes. Upon ligand binding, the protein receptor becomes conformationally
altered, which then changes intracellular protein interactions on its intracellular
domain and signaling commences. RTKs can also become activated due to
stochastic events such as genomic duplications/amplifications overexpressed due to
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genomic amplification, the receptors hetero- or homodimerize, trans-phosphorylate,
which then form new binding sites for downstream scaffolding and protein kinase
interactions [13–27]. Consequently, phosphoprotein-based biomarkers represent an
emerging and critical new category of companion diagnostic markers for precision
oncology applications [4, 8–10]. While activating EGFR mutations can identify
NSCLC patients that respond to EGFR-directed therapy, recent studies reveal that
EGFR phosphorylation associated with response to EGFR-targeted therapy [17],
even in EGFR wild-type NSCLC patients [18]. mRNA expression has not been
effectively able to predict and correlate with ongoing protein signaling/
phosphoprotein levels and act as an effective molecular surrogate for protein and
phosphoprotein levels [11, 12]. Moreover, measurement of total protein expression
levels often does not correlate with the phosphorylation levels of a given protein
since protein signaling works by rapid phosphorylation of a large substrate pool,
and total levels of a protein often do not predict therapy response, whereas the
phosphorylation level carries the weight of response prediction [10, 17, 18, 21, 28].
Therefore, technologies that can directly measure and quantify the levels and
amount of phosphorylation of proteins that represent the direct drug targets of many
of the FDA-approved and experimental inhibitors are critically needed.

6.3 Phospho-Specific Flow Cytometry

Phospho-specific flow cytometry or phospho-flow (PF) is a high-throughput tech-
nology that allows multiplexed measurement of the phosphorylation levels of
numerous cellular proteins mostly in non-solid tumors. Solid tumor analysis
requires complex tissue disaggregation techniques that are only possible with fresh
tissue. Each analyte is recognized by a phosphoepitope-specific fluorescent-labeled
antibody [29], and quantification is achieved using standard flow cytometry
instrumentation. The introduction of fluorescent cell barcoding systems (FCB) has
allowed PF technology to become a more high-throughput multiplex platform [30].
Use of FCBs notably reduces inter-experiment variability since all samples are
concomitantly incubated with the same phospho-specific antibodies and data are
acquired simultaneously across samples.

Using PF, some recent investigators [31] analyzed whether time-dependent
changes in the phosphorylation of S6 ribosomal protein (S6RP) associated with
response to therapy in acute myeloid leukemia (AML) patients treated with the
mTOR inhibitor Sirolimus in combination with a standard treatment regimen
(mitoxantrone, etoposide, and cytarabine). Phosphorylation/activation of S6RP, an
mTOR downstream substrate, was used as a direct readout of mTOR activity. Based
on the changes in the phosphorylation level of S6RP after 4 d of treatment, patients
were classified into three groups: sensitive, resistant, and unmodified. A total of
60% (3/5) patients with high levels of S6RP phosphorylation had at least 75%
reduction in pS6RP compared to the baseline levels and had either complete or
partial remission after therapy. Using a similar PF workflow, Irish and colleagues

6 Utilization of Proteomic Technologies for Precision … 173



[22] evaluated AML samples using PF with a comprehensive panel of antibodies
targeting different phosphoproteins with baseline whole blood samples treated
ex vivo with GM-CSF, G-SCF, IL3, FLT3, and INFc ligands. The investigators
sought to determine whether ligand-induced changes in the blood cell phospho-
proteome were significantly associated with patient response to standard treatment
[23]. The results indicated that a substantial number of patients presenting with
resistant disease showed increased p-STAT3 and p-STAT5 myeloid signaling after
stimulation with INFc, indicating that the ex vivo obtained phosphoprotein sig-
naling architecture of the patient blood cells could have prognostic value in iden-
tifying patients that most likely will respond to therapy.

6.4 Automated Quantitative Analysis (AQUA)

Traditional immunohistochemical (IHC) analyses represent gold-standard,
FDA-approved methodologies for a number of important predictive and prognostic
cancer biomarkers in the precision oncology space, such as PD-L1, HER2, and
estrogen receptor measurement. These pathology-based CLIA/CAP accredited
assays are highly standardized but are low-throughput and fraught with operator
dependency, subjectivity in cut point determination, and underpinned by subtle
differences in staining or subcellular localization interpretation that could have
potential clinical relevance. To address some of the issues surrounding
high-throughput IHC analyses, Rimm and colleagues developed a series of algo-
rithms that provide automated, rapid, and quantitative analysis called automated
quantitative analysis (AQUA) [32, 33]. AQUA analysis is comprised of algorithms
that utilize fluorescent tags to differentiate tumor and stroma cellular localization,
define specific subcellular compartments, and improve the assignment of pixels to
particular subcellular localizations. The cellular distribution and localization of a
given analyte of interest, e.g., HER2, are then quantitatively assessed according to
its co-localization with these tags [32]. A major advantage of AQUA technology is
that it allows a non-subjective continuous measurement of a target, expressed as an
AQUA score that is a “pixel intensity/pixel area” value. The technology compares
favorably with pathologist-based analysis of tissue microarrays, and Camp et al.
demonstrated that the technology could determine and reproducibly differentiate
subtle staining differences for nuclear b-catenin at the upper and lower extremes of
the dynamic range that significantly impacted outcome predictions in a cohort of
over 300 colon cancers compared to pathologist-based nominal classifications.

Assessment of phosphoprotein expression in clinical tissues by IHC has been
generally restricted to research-based correlative studies, largely due to antigen
retrieval issues of the phosphoepitope from FFPE material and questions sur-
rounding the effective preservation of these posttranslational modifications during
formalin fixation of tissues. Despite these issues, several studies have been pub-
lished using AQUA or a combination of AQUA and IHC to evaluate phospho-
protein expression and its correlation with various clinical parameters. Analyzing
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two cohorts of ovarian cancer tumors, Faratian et al. used AQUA to measure the
activation state of a number of druggable pathways, including AKT, MAPK,
B-catenin, among others, in an effort to establish associations with clinical
parameters and potentially identify treatment groups for targeted therapies and
predictive markers for therapeutic response [34]. Their analysis identified four
distinct groups of tumors based on phosphoprotein expression profiles in both
cohorts of tumors but found no association of these clusters with response to
standard chemotherapy. There was some association of individual phosphoproteins
with traditional tumor histopathological subtype, but overall, the phosphoprotein
expression profiles revealed new molecular subgroups that might facilitate new
approaches to selecting molecular-targeted therapies for these patients and provide
a rationale for testing them in prospective clinical trials [34].

6.5 Phosphoprotein Analysis by Mass Spectrometry

Recent technical advances in proteomics have made quantitative analysis of
phosphoproteins in human clinical tissue specimens feasible. While a large number
of proteins are ubiquitously phosphorylated to some extent, the levels of phos-
phorylation of key drug target signaling molecules are present at extremely low
levels and thus require some form of enrichment prior to analysis by mass spec-
trometry. A number of affinity-based enrichment techniques have been developed to
isolate phosphopeptides from complex cellular lysates. One example is the use of
antibodies specific for phosphorylated amino acids such as phosphotyrosine,
phosphoserine, and phospho-threonine which can be coupled to beads or other
matrices and used in column form or directly incubated with lysates and retrieved
by centrifugation. Other examples include immobilized metal affinity chromatog-
raphy (IMAC), metal oxide affinity chromatography (MOAC), metal oxide coated
bead-based enrichment, and more recently small-molecule kinase inhibitor-coupled
beads. These enrichment strategies are often used in conjunction with
pre-fractionation strategies such as strong cation or anion exchange chromatogra-
phy to achieve reliably detectable amounts of phosphopeptides [35]. Phospho-
peptide quantification from human tissues often incorporates various forms of
protein labeling such as isobaric tags for relative and absolute quantitation
(iTRAQ), dimethyl labeling, isobaric peptide terminal labeling (IPTL), and
non-isobaric isotope-coded protein labeling (ICPL), but label-free quantitation
strategies have also been employed [35]. Newer, highly sensitive mass spectrometry
techniques such as selective and multiple reaction monitoring (SRM and MRM) are
also being utilized to identify low-abundance phosphoprotein biomarkers in human
tissues.

A number of recent publications have used the aforementioned techniques to
focus on the measurement of signaling molecules and phosphoproteins in human
tissues. Geiger et al. reported the development and use of a super-SILAC mix of
cell lines as an internal standard for MS analysis of human breast cancer tissues
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[36]. The investigators were able to measure more than 100 protein kinases such as
ERBB2, EGFR, AKT, and members of the MAPK signaling cascade, as well as
approximately 100 phosphopeptides without any additional enrichment strategies.
The investigators were also able to detect and quantify a number of known and
novel differences between ductal and lobular breast carcinoma tissues [36] Another
recent study employed large-scale phosphoproteomic quantitation of human breast
cancer tissues using IMAC enrichment and iTRAQ labeling for LC-MS/MS anal-
ysis coupled with validation using SRM/MRM to identify potential biomarkers
differentiating high- and low-risk recurrence groups [37]. They identified many
thousands of unique phosphoproteins and 133 phosphopeptides (131 phosphopro-
teins) were differentially expressed between high- and low-risk recurrence groups
predicted by the MammaPrint gene expression assay. Nineteen of the candidate
phosphopeptides were verified by SRM using stable isotope peptides, and 15
underwent successful SRM-based quantitation. These results suggest that
large-scale phosphoproteome quantification coupled with SRM-based validation is
a powerful tool for biomarker discovery using clinical samples.

6.6 Multiplex Immunoassays

Multiplex immunoassays (MI) are sandwich-based immunoassays that can provide
a high-throughput approach to quantitatively measure a large number of analytes
from a limited amount of biological material. In this type of assay, the analyte of
interest is initially recognized by an antibody either immobilized into a solid sub-
strate (planar array-based assay) or conjugated to a bead (microbead assays).
A second antibody targeting a different epitope of the same protein is used to
quantify the amount of analyte in a biological sample. Meso Scale Discovery
(MSD), A2 protein microarray system, and FAST Quant are examples of the planar
array-based assay, while Luminex and FlowCytomix are two examples of
microbead-based assays.

Although all these platforms have been routinely used to monitor changes in the
expression level of cytokines, chemokines, and their receptors after administration
of bio- and chemotherapeutic agents [38], these technologies show great potential in
monitoring changes in phosphorylation of drug targets and/or their downstream
effectors. The high sensitivity of the MSD platform is attributable to combination of
the high binding capacity of the carbon substrate on which antibodies are immo-
bilized and the unique electrochemiluminescence detection system developed by
MSD [38]. A variable number of carbon electrodes (up to 10 per well) are
immobilized at the bottom of each well. Each electrode is then coated with one
specific antibody targeting the analyte of interest. After the phosphoprotein analyte
has been captured by the electrodes, it is recognized by a second
ruthenium-conjugated antibody targeting a different epitope of the same protein. By
applying an electroluminescent stimulation to the plate the ruthenium emits a signal
that is proportional to the amount of analyte present in the analytical sample [38].
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In a recent publication that described results from a phase II clinical trial testing
the efficacy of Sorafenib in metastatic prostate cancer patients [39], the investigators
used the MSD technology to interrogate phosphoprotein-based drug-related chan-
ges in the cellular signaling architecture from bone marrow cells. Sorafenib inter-
feres with cell proliferation by modulating the MAPK pathway through inhibition
of the Raf kinase and with angiogenesis by inhibiting the VEGFR and PDGFR
signaling. The investigators collected pre- and on-therapy bone marrow aspirates
from twenty-two androgen-independent prostate cancer patients with secondary
bone and/or soft tissue lesions and investigated whether modulation of the phos-
phorylation level of ERK, the major downstream substrate of Raf, could be used as
a predictive biomarker to determine the efficacy of Sorafenib in this group of
patients. Although no complete or partial response was observed in this cohort, one
of the two patients that showed radiological improvement of the metastatic lesion
revealed a significant decrease in the phosphorylation of ERK while receiving
Sorafenib, indicating that monitoring changes in the phosphorylation of kinase
substrates of key drug targets during therapy might have some potential value in
predicting patients’ response to therapy. The same platform was used by Yap and
colleagues [40] in monitoring changes in the phosphorylation level of AKT after
administration of the oral pan-AKT inhibitor MK-2206 in patients affected by
different types of solid tumors [40]. The authors collected matched pre- and
on-treatment biopsies from a subgroup of nine subjects. All samples showed sig-
nificant decrease in the phosphorylation level of AKT S473 after 15 d of treatment
(median reduction of 88%) confirming that MK-2206 is a chemical compound
capable of modulating AKT activity in vivo.

The Luminex technology uses polystyrene microspheres coupled with antibod-
ies, oligonucleotides, peptides, or receptors capable of recognizing specific
molecular targets [38]. The bead core is covered with a mixture of red and infrared
fluorophores. Microspheres are prepared by combining different ratios of the two
fluorophores, and each batch of beads is then coupled with one specific antibody
able to recognize the analyte of interest [38]. By modulating the concentrations of
the fluorophores and coupling each batch with a unique and specific antibody,
dozens to hundreds of beads can be analyzed simultaneously. Once the micro-
spheres have bound to the analyte of interest, a second fluorescent
R-phycoerythrin-labeled antibody recognizing a different epitope of the same
analyte is added to the mixture for the quantification of the protein of interest in the
solution [38].

Detection of the signal and protein quantification is achieved using flow
cytometry principles where individual microspheres are excited with a double laser
system in a series of detection chambers [41]. This platform presents with several
unique advantages. High accuracy/reproducibility, requirement of small amount of
biological material (low detection range: lower pico-molar range), timely delivery
multiplex results, and the possibility of creating customized platforms are all unique
trademarks of the Luminex technology [41].
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Perkins and colleagues [42] utilized the microbead-based platform to investigate
whether the phosphorylation levels of a variety of EGFR kinase downstream
substrates (MEK1; ERK1-2; AKT; P70S6K; and GSK3b) correlate with response
to treatment with EGFR inhibitors in colorectal cancer patients. Forty-two meta-
static colorectal cancer patients were included in the study and had been prede-
termined as EGFR positive by IHC. Patients were treated either with cetuximab or
panitumumab as a single agent or in combination with standard of care. The
investigators found a significant inverse association between p70S6K phosphory-
lation levels and response to therapy, indicating that highly activated p70S6K (a
key member of the mTOR pro-survival pathway) prevented the targeted drug from
inhibiting tumor growth and progression.

A phase I clinical trial recently conducted by Baselga and colleagues [43]
investigated the safety and tolerability of Saracatinib, a Src inhibitor, in patients
affected by solid tumors refractory to standard of care. One of the secondary
objectives of this study was to evaluate changes in the Src-mediated activity after
21 d of treatment. Twenty-one matched pre- and post-therapy biopsies were col-
lected from a subgroup of patients enrolled in the study. The investigators measured
the expression and activation levels of Paxillin and FAK, two proteins known to
directly indicate Src kinase activity [43], were quantified using the Luminex plat-
form. Although no complete or partial response was achieved in this cohort of
patients, this study showed significant dose-dependent reduction in the activation of
Src downstream substrates after 21 d of treatment. Moreover, the authors reported
that patients presenting with high activation levels of Src downstream effectors at
baseline showed the greatest reduction in phosphorylation after the administration
of Saracatinib indicating that pre-treatment selection of patients based on baseline
Src activation might increase drug efficacy.

6.7 Reverse Phase Protein Microarrays as a Tool
for Personalized Cancer Therapy

Based on the need to effectively measure the functional activated protein signaling
architecture for targeted therapy applications, our laboratory developed a planar
array-based technology that can quantitatively measure the phosphorylation/
activation state of dozens to hundreds of signaling proteins concomitantly. This
technology called the reverse phase protein microarray (RPPA) is proving to be a
key enabling technology for the analysis of clinical material [44–50]. Unlike a
forward phase array format (e.g., antibody array) where the analyte detecting
molecule is immobilized, with the RPPA format, cellular or tissue lysates (or even
body fluids) from individual samples are printed directly and immobilized on a
planar surface such that an. Depending on the size of the pin used to print the
samples, it is possible to print a few hundred to several thousand spots on each
slide. Since each printing deposits as little as 1–5 nl, it is possible to as many as 100
slides from a lysate of only a few thousand cells [47]. The most widely used
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substrate is nitrocellulose, which has the aggregate attributes of low cost, high
binding capacity, and low relative background. With the RPPA format, each slide is
incubated with one specific primary antibody, and a single analyte endpoint is
measured and directly compared across multiple samples on each slide. Each array
is printed with a series of high and low controls and calibrator samples that contain
predetermined and varying amounts of the target analyte that span the expected
linear dynamic range of the analyte. The RPPA, when used as a calibrated
immunoassay, provides a straightforward means of quantifying any input by
interpolation or extrapolation to the printed calibrator. While the RPPA was initially
designed for colorimetric detection, fluorescent detection using near-infrared dye
coupled reagents [49] has become popular due to the dramatically increased within
spot dynamic range of the assay (Fig. 6.1).

The RPPA is capable of extremely sensitive analyte detection, for example, with
reported levels of a few hundred molecules per spot and a CV of less than 10%
[47]. Overall analytical sensitivity is ultimately dependent on analyte concentration,
antibody affinity, and avidity, and however, the general sensitivity of detection for
the RPPA is such even extremely low-abundance phosphorylated signaling proteins
can be measured from a lysate containing less than 10 cell equivalents [47]. The
ability to generate a quantitative linear signal from such small amounts of material,
and do so in high multiplex, is the unique attribute of the RPPA that distinguishes it
from every other proteomic technique. This attribute becomes extremely important
for clinical applications where often the starting input material is only a few hun-
dred cells from a needle biopsy or fine needle aspirate specimen. Like a clinical
immunoassay, the RPPA has been transitioned to a calibrated assay format that
allows for cut point determination and extension of results into a CAP/CLIA setting

Fig. 6.1 Laser capture microdissection–reverse phase protein microarray workflow. Clinical
tissue samples are subjected to laser capture microdissection to procure highly enriched and
purified cell populations that are then lysed and printed on nitrocellulose slides. Each slide is then
exposed to a specific primary antibody and secondary antibodies that amplify the analyte
concentration within each spot to produce a colorimetric or fluorescent signal that is captured by
the appropriate detector type and analyzed
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(Fig. 6.2). RPPA, like immunohistochemistry, is dependent on the availability of
high quality, specific antibodies, particularly those specific for posttranslational
modifications or active states of proteins, and is a major limiting factor for the
successful implementation of any immunoassay-type platforms. Up-front rigorous
validation of each antibody is essential in order to be confident that the signal
generated on the array is a result of the specific analyte being detected. Most RPPA
workflows include background subtraction from arrays that have been exposed to
the secondary antibody alone as well as local intra-array background subtraction. In
addition, normalization of the signal itself is usually obtained by measuring the total
amount of protein printed on the array, although newer techniques that normalize
by DNA content of the lysate can be extremely helpful in instances where the
sample is contaminated by exogenous proteins such as blood [50].

Key technological components of the RPPA offer several advantages over other
array-based platforms. The RPPA can employ denatured lysates, so that antigen
retrieval of sterically hindered phosphorylated epitopes, a significant limitation for
tissue arrays, antibody arrays, and immunohistochemistry technologies, is not an
issue. Kinase profiling efforts require maintenance of cellular/tissue kinase activity,
yet maintaining that activity to reflect only what had occurred in the patient and not

Fig. 6.2 Calibrated RPPA format for clinical use. Denatured cellular lysates, obtained from
clinical isolates, laser capture microdissected material, etc., are spotted directly onto a
nitrocellulose-coated slide and multiple samples are simultaneously probed with the same
antibody. Each sample may be printed in a step-wise dilution curve (shown) or as a single replicate
spot (not shown) with colorimetric or fluorescent detection, respectively. Similar to an ELISA or
immunoassay, high and low controls and calibrators are printed on every slide with the RPPA
format to ensure inter and intra-assay reproducibility, process QA/QC and fidelity of data
generated. The final values for any patient sample can be interpolated to the reference calibrator
printed on every array
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influenced by exogenous tissue processing artifact is extremely difficult. RPPAs
only require a single class of antibody per analyte protein and do not require direct
tagging of the protein as readout for the assay. Other technologies, such as sus-
pension bead array platforms, have significant limitations in the portfolio of ana-
lytes that can be measured, even in multiplex, because of the requirement of a
two-site assay. Moreover, since the RPPA platform can measure the activation state
of so many individual signaling molecules at once, broad-scale analysis of the
signaling architecture on a pathway basis can provide a detailed understanding of
the interconnections within the cellular circuitry even though a single snapshot in
time (e.g., biopsy) is the input for analysis.

RPPA technology was first described by our group over a decade ago wherein
LCM-RPPA workflow (Fig. 6.2) revealed that AKT signaling is activated at the
invasion front during prostate cancer progression with a number of those AKT
pathway members activated in early stage prostatic intra-epithelial neoplasia [44].
In another study, a phosphoprotein-based signature comprised of multiple members
of the AKT-mTOR pathway was found to be systematically activated in rhab-
domyosarcoma tumors from children who did not respond to chemotherapy and
progressed rapidly [48].

Since cancer is often diagnosed at later stages, many treatments center on
management of metastatic disease. As metastasis is the lethal aspect of the disease,
then analyzing the signaling profile of the metastatic lesion may be a critical
requirement for the correct selection of targeted agents since there is a distinct
possibility that the signaling architecture of the metastatic tumor cells will differ
significantly from those of the primary tumor cells. In fact, recent analysis of
patient-matched primary colorectal cancer lesions and liver metastases suggested
that signaling in metastatic hepatic lesions differed considerably from that in the
matched primary lesions [45].

Uncovering mechanisms of the development of resistance to targeted agents is
another important area where the RPPA technology can have significant impact. In
fact, RPPA analysis was used to identify protein markers predictive for therapeutic
response or resistance in a number of different types of cancers [51–56]. Studies in
ovarian cancer and colon cancer cell lines identified pathway markers involved in
nucleotide excision repair that were associated with chemotherapy drug activity
[51]. Pathway analysis of melanoma cell lines and patient samples revealed that
phosphorylation of 4E-BP1 was increased in melanoma cell lines carrying muta-
tions in BRAF and PTEN compared to cells with wild-type RAS/RAF/PTEN and
was associated with worse overall and post-recurrence survival [52]. Analysis of
breast cancer cell lines found that distinct patterns of signaling were present in
groups representing different molecular subtypes of breast cancer that were not
obvious from gene transcription profiling [53]. In this study, the investigators found
that treatment of basal-type cells with MEK inhibitors resulted in AKT signaling
activation, which could have implications for treatment response to other thera-
peutic agents. RPPA analysis of the signaling architecture of cells being evaluated
for response and resistance to the PI3K inhibitors found that mutations in the genes
for PI3K and loss of PTEN activity were potential predictors of sensitivity to these
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inhibitors [54]. Interestingly, Ras mutations (so prevalent in pancreatic cancers)
were a major resistance marker in this study, even in the presence of PI3K muta-
tions and measurements of phosphorylated AKT (S473). Moreover, expression of
c-Myc and cyclin B, which are downstream targets of Ras, were up-regulated in
PI3K inhibitor resistant cell lines in vivo and were also negatively associated with
response to the drug in vivo.

Drugs targeting the EGFR and HER family signaling pathway are some of the
most intensely studied in the field of molecular-targeted therapies. A recent study
by Xia et al. identified an entirely novel mechanism of lapatinib resistance, a
small-molecule inhibitor of EGFR and HER2, in breast cancer [55]. Using a series
of isogenic lapatinib sensitive cell lines and those with acquired resistance and
broad-scale RPPA-based pathway activation mapping of hundreds of key signaling
proteins, the investigators found that resistance was due to the “leaky” nature of
lapatinib whereby incomplete inhibition of EGFR phosphorylation by lapatinib
supplied effective selective pressure to cause the cells to increase the production of
the heregulin ligand and switch from HER2 to HER3 signaling to heregulin-driven
EGFR-HER3 signaling. Investigators utilized RPPA-based pathway activation
mapping to study mechanisms of estrogen resistance in breast cancer also using
matched resistant/sensitive cell lines and found that several pathways involved in
cell proliferation and survival were activated in tamoxifen-resistant lines [55]. Most
recently [56], we utilized the RPPA platform to measure the activation/
phosphorylation state of HER family proteins (e.g., HER2, EGFR, and HER3) in
HER2+ and triple negative stage II/III breast cancer patients treated with the tar-
geted therapeutic neratinib in the I-SPY2 TRIAL. Based on the mechanism of
action of neratinib as a HER2 and EGFR dual kinase inhibitor, we postulated that
the pre-treatment phosphorylation levels of these 2 protein targets would predict
response (pathological complete response or pCR) in this cohort. Indeed, and
intriguingly, phosphorylated EGFR (Y1173) and HER2 (Y1248) both highly cor-
related with response and were able to predict response to the drug in both the
HER2+ and HER2− subgroups. Neither the total levels of HER2, EGFR nor the
mRNA expression levels of these genes predicted response—only the phospho-
protein analyte.

6.8 Pre-analytical Factors Influence Phosphoprotein
Pathway Activation Mapping

Clinical and preclinical tissues are most often a heterogeneous mixture of inter-
acting cell populations, such as fat cells, nerve cells, endothelial vessel cells, muscle
cells, fibroblasts, epithelial cells, and immune cells as well as acellular material such
as collagen and serum. Workflows where whole tissue is lysed and analyzed as a
whole may generate inaccurate measurements of signaling activation or deactiva-
tion since most signaling molecules are ubiquitously expressed in different cell
populations. The use of laser capture microdissection (LCM) combined with RPPA
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provides a facile means of detailed molecular analysis of discrete cell populations
within a clinical biopsy specimen. The impact of uncontrolled cellular hetero-
geneity on phosphoprotein measurements was recently described whereby pathway
activation mapping was performed on patient-matched undissected and LCM
procured glioblastoma, ovarian, and breast cancer tumor epithelium and revealed
significant and numerous differences in pathway activation portraits between the
two [57, 58] with most patient pairs not revealing any overarching similarity.
Additionally, when comparing molecular correlations between expected relation-
ships in PTEN protein and phosphoprotein expression and PTEN loss of
heterozygosity and mutation status as well as EGFR activation and EGFR mutation
status, only data obtained from the LCM material produced the expected results
[57]. Moreover, despite the dramatic differences seen between LCM and undis-
sected cells, these past studies utilized studies wherein many of the cases contained
over 50% tumor, which would represent a relatively high upper end of what would
normally be seen in a large clinical trial setting (where an average of approximately
20–30% tumor content is seen in a core needle biopsy.

Even if the impact of uncontrolled cellular heterogeneity is minimized by cel-
lular enrichment techniques such as LCM, proteins and phosphoproteins are
inherently labile and are acutely affected by pre-analytical variables such as
post-excision delay, time of the tissue on the pathologist bench prior to fixation, etc.
Recent results have found that within 15–30 min after a tissue specimen is removed
from the body, many phosphoproteins become both activated and deactivated as the
still-living tissue undergoes hypoxic and acidotic changes ex vivo and activate
survival signaling [59, 60]. Obviously, treatment decisions cannot be based on
molecular changes that occur because of how long the tissue sat on the pathologist’s
table. Since formalin fixation of tissue occurs so slowly (*1 mm/h), simply
dropping a piece of tissue into formalin does not solve the issue of preserving the
in vivo signaling portraits of a tissue sample. The development of next-generation
rapid penetrating fixatives or tissue processing methods that can preserve the labile
phosphoprotein signaling architecture while maintaining formalin-equivalent his-
tomorphology is of critical importance, and such reagents and methods are being
developed [61].

6.9 A View to the Near Future: Impact of Proteomics
on Precision Oncology

As new classes of multiplexed proteomic technologies such as the RPPA establish
themselves as necessary components of the tissue molecular work up and the use of
phosphoprotein-based biomarkers for drug response prediction and patient selection
accelerates, we can visualize a future where these approaches coexist with genomic
analysis for a systems-level view of tumor biology. Such a multi-omic view will
invariably provide a more detailed and accurate view of the druggable landscape of
an individual patient tumor as well as help to more fully elucidate true driver
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molecular alterations that are causally important for tumorigenesis. Based on the
current drug development pipeline, in less than 5 years there may be hundreds of
targeted therapies cleared for use by the FDA, with as many or more protein
companion diagnostic markers being offered. Consequently, it will not be possible
to measure 50–75 phosphoproteins at once from a single biopsy specimen using
standard IHC, ELISA, etc. technologies. At this time, new classes of multiplexed
proteomic formats such as the RPPA are uniquely positioned to produce a quan-
titative readout of the activation state of dozens to hundreds of drug targets at once.
In addition, as combination therapies tailored to each patient’s tumor architecture
begin to become part of routine pathological workup, the need to effectively
measure the activated protein “circuitry” will be central to this effort. Indeed, one
can envision a future vision for cancer patients whereby a “wiring diagram” of each
patient’s tumor biopsy is produced by these technologies and provided to the
treating oncologist as part of a pathology report, providing a circuit view of the
actionable/druggable landscape and a molecular rationale for patient-tailored ther-
apy. These new opportunities are destined to change the landscape of precision
oncology in the near future.
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7.1 Introduction

Cancer immunotherapy is a revolutionary treatment paradigm designed to stimulate
or program the immune system to target cancer. It has gained remarkable attention
in recent years with multiple US Food and Drug Administration (FDA) approvals of
immune checkpoint pathway inhibitors and adoptive cell therapies for the treatment
of patients with hematological malignancies and solid cancers. The recent onslaught
of immunotherapy approaches that are either FDA approved or actively being tested
in cancer patients is rooted in early observations of interactions between the
immune system and cancer more than a century ago. These first scientific reports
came from Germany in the late nineteenth century when the physicians W. Busch
and F. Fehleisen noted regression of cancers in patients after accidental infection
with erysipelas. After the discovery of group A Streptococcus bacterium as the
causative agent of erysipelas, a few years later, another German physician,
P. Bruns, intentionally administered the organism to a cancer patient and observed
tumor shrinkage. Thereafter, the American surgeon, William Coley, began to inject
heat-inactivated bacteria (“Coley’s toxins”) into patients with inoperable sarcomas
and identified a high rate of tumor regression in hundreds of patients [1]. Regret-
tably, this approach was not adopted during Coley’s lifetime due to concerns about
his scientific protocols and the inconsistency of his results. In the latter half of the
twentieth century, Lloyd Old showed that the bacterium Bacillus Calmette-Guérin
(BCG), a tuberculosis vaccine, could inhibit tumor growth in a mouse model [2].
William Coley and bacterial immunotherapy as a cancer treatment were vindicated
when subsequent clinical studies stemming from Old’s findings demonstrated the
effectiveness of BCG in treating superficial bladder tumors [3], which was ulti-
mately approved by the FDA for the treatment of patients with bladder cancer in
1990. By the late twentieth century, multiple parallel immune-stimulating approa-
ches were providing fundamental evidence for utility in redirecting the immune
system to target cancer. For instance, interferon alpha, a cytokine that boosts
immune responses in multiple tumor types, was the first biological cancer therapy
tested in humans (late 1970s), receiving FDA approval in 1986.

In the late 1990s and early 2000s, seminal studies uncovered that the immune
system not only played a key role in protection against tumor formation, but was
also instrumental in shaping tumor immunogenicity, and ultimately, in promoting
cancer progression. The cancer immunoediting theory emerged, which summarizes
the dual and opposing roles that the immune system can play in cancer patients,
which is comprised of three sequential stages: “elimination,” “equilibrium,” and
“escape.” Elimination is, in principal, cancer immune surveillance, where the
immune system recognizes and destroys tumors before they become clinically
detectable. If elimination in incomplete, the equilibrium phase ensues, accompanied
by control or inhibition of tumor outgrowth. If tumors progress through this stage,
escape occurs where growing tumor populations that have reduced immunogenicity
and/or establish immune-suppressive mechanisms can bypass immune recognition
and tumor targeting.
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In addition to BCG and cytokine therapies which have shown promise in the
treatment of some cancers, more personalized immunotherapies in the form of the
dendritic cell cancer vaccine, sipuleucel-T, for the treatment of patients with
metastatic castration-resistant prostate cancer (mCRPC), checkpoint pathways
inhibitors to bypass suppressive mechanisms in solid and hematological malig-
nancies, and more recently, adoptive cell therapy using CD19-directed chimeric
antigen receptor (CAR)-engineered T-cell therapy for the treatment of patients with
relapsed/refractory B-cell malignancies, have highlighted the tremendous oppor-
tunities for immunotherapy to effectively treat patients even with advanced
refractory disease. Today, several hundred immunotherapy clinical trials aimed at
redirecting the host immune system to selectively target cancer cells are underway.
While we have made remarkable headway in developing effective immunotherapies
for certain cancers, we are still in relative infancy when it comes to understanding
the complexities of the immune system in human diseases. Therefore, it is
increasingly evident that precision medicine will be required in driving personalized
immunotherapies forward to create safe and effective treatments for each and every
patient (Table 7.1).

7.2 Immunotherapy Strategies

7.2.1 Cancer Vaccines

7.2.1.1 Autologous and Allogeneic Tumor Cell Vaccines
Cancer vaccines using patient tumor cells were first evaluated in the late 1970s [4].
Whole tumor cells are collected, often irradiated, combined with a stimulatory
adjuvant, and administered back into the patient. The main potential benefit of this
approach is the ability to present all tumor-associated antigens (TAAs) to the
patient’s immune system. However, as this strategy requires the acquisition of
tumor tissue for processing, it is inherently limited by tumor type and disease bulk.
Given the limitations of autologous tumor cell vaccines, allogeneic whole tumor
vaccines that combine several established human tumor cell lines have been
developed. In contrast to autologous tumor cell vaccines, these allogeneic tumor
vaccines can be standardized and readily produced at a larger scale in a cost-
effective manner.

One technology designed to enhance immune stimulation by tumor cell vaccines
has been the genetic engineering of tumor cells to secrete granulocyte-macrophage
colony-stimulating factor (GM-CSF) prior to irradiation. These GM-CSF-
transduced autologous tumor cell vaccines (GVAX) recruit dendritic cells for
tumor antigen presentation and priming of cytotoxic lymphocytes [5]. GVAX-PCa,
a prostate cancer vaccine containing two irradiated prostate cancer cell lines that
express GM-CSF, showed promising early results in patients with mCRPC. In a
phase I/II trial, GVAX-PCa was found to be safe and appeared to extend survival

7 Precision Medicine-Enabled Cancer Immunotherapy 191



Table 7.1 Overview of the targets and current status of different immunotherapy strategies

Immunotherapy
strategy

Common targets FDA-approved
therapies

Indication

Cancer vaccines
—Autologous and
allogeneic tumor cell
vaccines

GVAX-PCa: irradiated prostate
cancer cell lines expressing
GM-CSF

None, terminated
in phase III trials

mCRPC

—Peptide-based
cancer vaccines

TERT, EGFRvIII, MUC,
MAGE

None, ongoing
trials

Multiple solid
tumor types

—Dendritic cell
vaccines

PAP-GM-CSF Sipuleucel-T
(2010)

mCRPC

—Viral vaccines PSA (PROSTVAC) None, ongoing
combination
trials

mCRPC

—DNA vaccines CpG None, ongoing
combination
trials

Melanoma and
other solid tumor
types

Recombinant proteins IL-2 Proleukin (1992,
1998)

mRCC,
melanoma

IL-12 None, ongoing
combination
trials

Multiple solid
tumor types

IL-15 None, ongoing
trials

Multiple solid
tumor types

Agonistic antibodies CD137 (4-1BB) None, ongoing
combination
trials

Multiple solid
tumor types

OX40 None, ongoing
combination
trials

Multiple solid
tumor types

CD40 None, ongoing
combination
trials

Multiple solid
tumor types

Checkpoint pathway
inhibitors

CTLA-4 Ipilimumab
(2011)

Metastatic
melanoma

PD-1/PD-L1 —
Pembrolizumab
and
—Nivolumab
(2014),
—Atezolizumab
(2016),
—Avelumab and
—Durvalumab
(2017)

Refractory
melanoma
NSCLC
MCC
mUC

LAG-3, TIM-3, TIGIT None, ongoing
trials

Multiple solid
tumor types

(continued)
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with a high-dose boost [6]. However, two phase III trials evaluating GVAX-PCa in
combination with docetaxel in mCRPC were terminated early due to increased
mortality and lack of therapeutic efficacy.

7.2.1.2 Peptide-Based Cancer Vaccines
Recombinant vaccines, based on peptides from TAAs, represent an alternative to
autologous or allogeneic cancer vaccines. TAAs encompass antigens overexpressed
in cancer (e.g., TERT and mesothelin), oncofetal antigens (e.g., MUC1 and CEA),
cancer–testis antigens (e.g., MAGE, NY-ESO-1, and SSX-2), lineage-restricted
antigens shared by both normal tissue and tumors (e.g., PSA and PAP in prostate
epithelium and prostate cancer), and tumor-specific antigens such as mutated
oncogenes (e.g., BRAFV600E) or oncogenic viral antigens (e.g., E7 from HPV-16).
TAAs are not highly immunogenic, and therefore, recombinant vaccines are gen-
erally co-administered with an adjuvant or an immune modulator to boost immune
responses.

Most of the peptide-based vaccines that have been investigated in clinical trials
have targeted oncofetal antigens, cancer–testis antigens, and lineage-restricted
antigens. In phase III studies, a peptide-based vaccine targeting the lineage-specific
melanocyte antigen gp100 did not show added therapeutic benefit in patients with
unresectable stage III or IV melanoma when added to ipilimumab [7], but did show
improved clinical responses and a longer progression-free survival when added to
IL-2 [8]. Several other vaccines have demonstrated promising activities in early
phase studies, but failed to demonstrate a benefit in phase III studies. One example

Table 7.1 (continued)

Immunotherapy
strategy

Common targets FDA-approved
therapies

Indication

Oncolytic viruses HSV T-VEC (2015) Metastatic
melanoma

Other HSV, adenoviruses,
vaccinia viruses, PV, RV, NDV

None, ongoing
trials

Multiple solid
tumor types

Adoptive T-cell
therapies
—Tumor-infiltrating
lymphocytes (TILs)

Specific TAAs (e.g., ERBB2IP,
SLC3A2)

None, ongoing
trials

Multiple solid
tumor types

—TCR T-cell therapy NYESO-1, MART-1, MAGEs,
HPV, CEA

None, ongoing
trials

Multiple solid
tumor types

CAR T-cell therapy Hematological malignancies
(CD19, BCMA, CD123, CD33)

—
Tisagenlecleucel
(2017)
—Axicabtagene
ciloleucel (2018)

B-ALL
NHL

Solid tumors (GD2, HER2
IL13Ra2, mesothelin, PSMA,
PSCA)

None, ongoing
trials

Multiple solid
tumor types
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is rindopepimut, a vaccine targeting the EGFR deletion mutation, EGFRvIII, which
when combined with temozolomide did not increase survival in patients with newly
diagnosed glioblastoma [9]. Similarly, tecemotide, a MUC antigen-specific vaccine,
provided no survival benefit after chemoradiotherapy for unresectable stage III
non-small cell lung cancer [10].

One issue facing peptide-based vaccines is that targeting either one or a few
epitopes of the TAA increases the potential for immune escape of cancer. Improved
efficacy has been suggested with multi-peptide vaccine cocktails than with
single-peptide vaccines [11]. In a phase II study, IMA901, a renal cell carcinoma
vaccine with ten tumor-associated peptides, appeared to induce immune responses
and prolong overall survival in a phase II study. Disappointingly, a phase III study
of IMA901 in combination with sunitinib in the first-line treatment of metastatic
renal cell carcinoma did not improve overall survival [12]. Additional multi-peptide
vaccine cocktails, long peptide vaccines designed to present epitopes to both
cytotoxic and T helper lymphocytes, and combination vaccine strategies are cur-
rently under active clinical investigation.

7.2.1.3 Dendritic Cell Vaccines
Dendritic cells (DCs) are professional antigen-presenting cells (APCs) that are
involved in the interplay between the innate and adaptive immune systems. DCs
present antigenic peptides from pathogens or the host to activate or prime naïve
antigen-specific T lymphocytes in lymphoid organs. Human DCs can be isolated
from peripheral blood mononuclear cells or from cultures of CD34+ hematologic
progenitor cells. DC vaccines are generated by loading TAAs onto the DCs and
stimulating with adjuvants, after which the DCs are introduced back into the
patient. Sipuleucel-T, an autologous cellular vaccine in which APCs (including
DCs) obtained from leukapheresis are incubated with prostatic acid phosphatase
(PAP) fused to GM-CSF, was FDA approved in 2010 as the first anti-cancer
vaccine for the treatment of mCRPC. Sipuleucel-T demonstrated a favorable tox-
icity profile and was found to provide an overall survival benefit of 4.1 months
(25.8 months vs. 21.7 months) when compared to placebo [13]. While
Sipuleucel-T is considered a clinical success, its anti-tumor effects are quite modest
with a 4.1-month improvement in overall survival. Recent clinical studies with DC
vaccines have incorporated new adjuvants and concomitant immune modulatory
agents to enhance immunogenicity and T-cell stimulation with the hope of
enhancing anti-tumor activity.

7.2.1.4 Viral Vaccines
Pathogens like viruses contain numerous molecules that can induce immune acti-
vation pathways. The use of a viral vector to deliver tumor antigens can therefore
potentially increase immune stimulation. Viruses have been used for direct
immunization, but the development of neutralizing antibodies can prevent repeated
use. One strategy to circumvent this has been virus-based prime boost in which the
immune system is first primed with one vaccine followed by a boost of the response
with a second, different vaccine. An example of this approach is PROSTVAC,
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in which recombinant vaccinia encoding PSA and three immune co-stimulatory
molecules (LFA-3, ICAM-1, and B7.1), collectively called TRICOM, are admin-
istered subcutaneously to prime and then followed by six boost doses of
fowlpox-expressing PSA and TRICOM [14]. A phase II study showed that patients
with minimally symptomatic mCRPC receiving PROSTVAC had a 9.9-month
overall survival benefit compared to those receiving the control empty vector
(26.2 months vs. 16.3 months) [15]. However, the phase III PROSPECT trial in
minimally symptomatic mCRPC patients did not demonstrate an improvement in
overall survival. Ongoing studies are exploring PROSTVAC in combination with
immune checkpoint inhibitors or with chemotherapy.

7.2.1.5 DNA Vaccines
Bacterial DNA induces innate immune responses through stimulation of Toll-like
receptors (TLRs) which recognize structurally conserved molecules found in
microbes. For instance, unmethylated deoxycytidylate-phosphate-deoxyguanylate
(CpG) dinucleotide motifs found in bacterial and viral but not mammalian DNA
activate TLR9, leading to increased inflammatory cytokine production [16]. Bac-
terial DNA plasmids are therefore used to stimulate an immune response while
enabling expression of TAAs by the host. DNA vaccines are generally introduced
via intradermal or intramuscular injections to transfect cells in the skin or muscles.
Current studies are aimed at improving delivery, increasing immune stimulation
with molecular adjuvants, and enhancing TAA transgene expression from modified
bacterial plasmids.

7.2.1.6 Personalized Vaccine Approaches
The sets of somatic mutations found in each individual tumor are very distinct.
These mutations lead to the alteration of protein sequences, generating neoantigens
from which neoepitopes may be processed and presented on major histocompati-
bility complex (MHC) molecules. Several observations point to the importance of
immune recognition of neoepitopes. First, neoepitope-specific T cells appear to
have significant anti-tumor activity in the context of immune checkpoint inhibition
and adoptive transfer of autologous tumor-infiltrating lymphocytes (TILs) [17, 18].
Second, there is a positive correlation between the mutational frequency found in a
tumor, the immune cell infiltration of a tumor, and overall survival [19]. Person-
alized vaccines, using any variety of the vectors described above, are designed to
target neoantigens in order to stimulate the immune system against the individual’s
tumor. However, this approach is both costly and slow as it requires the identifi-
cation of mutations by next-generation sequencing of a patient’s tumor DNA,
prediction of neoepitopes from the mutational data based on algorithms, and per-
sonalized design and production of the vaccine.
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7.2.2 Recombinant Proteins

There is a long history of physicians and healers, including Hippocrates, docu-
menting the shrinkage of tumors in patients with high fevers. Fevers are induced by
a subset of cytokines, which are a group of proteins secreted by the immune system
that modulate cell signaling. Immune-stimulating cytokines can activate innate or
adaptive immune responses, and a few also demonstrate anti-tumor effects. Class I
interferons are a type of cytokine, which have been shown to induce cell death and
block angiogenesis in tumors [20]. Recombinant interferon-a2a (IFN-a2a) and
interferon-a2b (IFN-a2b) were approved for clinical use in 1986 for the treatment
of various cancers, including chronic myeloid leukemia, hairy cell leukemia, and
malignant melanoma [21]. Another cytokine, recombinant interleukin-2 (IL-2),
which has immunostimulatory effects on lymphocytes and natural killer (NK) cells
that mediate anti-tumor activity, was first generated and characterized by Steven
Rosenberg and colleagues [22]. High-dose IL-2 was clinically approved for patients
with metastatic renal cell carcinoma in 1992. Multiple clinical studies of high-dose
IL-2 in metastatic renal cell carcinoma showed a complete response rate of 9%, and
over 80% of the patients with complete responses had durable remissions
amounting to a cure [23]. High-dose IL-2 was subsequently approved for malignant
melanoma in 1998, based on a series of studies showing an overall response rate of
16% with 6% of patients achieving complete responses [24]. These early findings
were critical to the development of adoptive cell therapy (described below), which
was also spearheaded by Rosenberg.

Similar to IL-2, IL-15 is also able to stimulate lymphocytes and NK cells to
induce anti-tumor effects. IL-15 may potentially be superior to IL-2 for cancer
immunotherapy because it enhances immune memory through propagation of
memory T cells, prevents activation-induced T-cell death, and does not expand
immunosuppressive regulatory T cells (Tregs) [25]. However, IL-15 is limited by a
short half-life and poor bioavailability. IL-12, which has shown both immune and
non-immune anti-tumor effects, is another cytokine that has been of high interest to
the field. IL-12 increases interferon-gamma (IFN-c) production, activates NK cells
and T lymphocytes, and remodels the tumor microenvironment. Findings by Judah
Folkman demonstrate that IL-12 also inhibits tumor-associated angiogenesis [26],
which may play a significant role in its anti-tumor activity. Although recombinant
IL-12 appeared promising in preclinical studies, clinical trials of IL-12 monother-
apy did not show clinical efficacy. Multiple clinical trials investigating recombinant
IL-15 or IL-12 therapy in cancer, including enhanced formulations and combina-
tions with chemotherapy or other immunotherapies, are currently ongoing.

Since endogenous cytokines have valuable anti-tumor potential, several strate-
gies are under development to enhance their efficacy. One approach has been the
engineering of novel fused cytokines to deliver signals that induce immune
responses in subsets of cells, such as the fusion of GM-CSF to various interleukins,
each of which have unique immunomodulatory effects. These fusions not only have
the potential to benefit cancer immunotherapy but can also be applied to the
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treatment of infections and amelioration of autoimmune diseases [27]. Another
strategy is the fusion of cytokines to antibodies in order to localize cytokine effects
to specific cells or tissue compartments. An early demonstration of this technology
came in the form of a fusion protein encoding an anti-GD2 ganglioside binding site
and recombinant IL-2, which showed enhanced lysis of neuroblastoma cells and
disease control relative to systemic IL-2 administration in a preclinical xenograft
model [28]. Furthermore, conjugation of cytokines with chemical moieties such as
polymer polyethylene glycol (PEG) has been performed to enhance protein
half-life. Successful PEGylation of IFN-a2a and granulocyte colony-stimulating
factor (G-CSF) has been achieved and is clinically available.

7.2.3 Agonistic Antibodies

A number of co-stimulatory molecules are expressed on T cells that provide signals
to sustain an optimal response and promote expansion. 4-1BB is a co-stimulatory
molecule found on activated T cells and NK cells. Engagement of 4-1BB leads to
pro-survival signaling and enhanced T-cell effector functions even in dysfunctional
T cells [29]. Agonistic 4-1BB antibodies have shown anti-tumor effects in pre-
clinical mouse models [30], and currently ongoing clinical trials show early evi-
dence of safety and clinical benefit. OX40 is another co-stimulatory molecule
expressed on CD8+ T cells, NK cells, natural killer T (NKT) cells, and neutrophils.
It is engaged by the OX40 ligand (OX40L), which is presented on APCs only after
activation. In preclinical studies, both antibodies against OX40 and OX40L-Fc
fusion proteins enhanced anti-tumor responses in mouse models [31]. OX40 ago-
nists, either alone or in combination with other immune modulatory agents, are in
clinical trials for cancer immunotherapy. For example, the combination of OX40
agonists and CpG has demonstrated exceptional preclinical anti-tumor activity
against multiple tumor types and is now being investigated in early clinical trials
[32]. However, a recent study indicated that the anti-tumor effects of OX40 ago-
nistic antibody therapy can be negated by simultaneous PD-1 inhibition [33]. These
findings underscore the need for preclinical validation of combination and
sequential immunotherapies prior to clinical translation. Additional agonistic anti-
bodies or recombinant ligands designed to engage CD27, CD28, CD40, ICOS, and
others are in various stages of development for cancer therapy.

7.2.4 Checkpoint Pathway Inhibitors

Immune activation requires strict regulation, and several negative regulators or
checkpoints of T-cell response have been identified. James Allison and Jeffrey
Bluestone discovered cytotoxic T lymphocyte-associated protein 4 (CTLA-4),
which was found to translocate to the cell surface in activated T cells and compete
with CD28 for binding to co-stimulatory molecules [34, 35]. Blockade of CTLA-4
with an antibody was found to induce tumor regression in mouse cancer models,
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warranting its investigation in the clinic. Treatment of patients with metastatic
melanoma with the anti-CTLA-4 antibody, ipilimumab, resulted in a 15% objective
response rate with many patients experiencing durable remissions [36]. Ipilimumab
was found to extend overall survival in metastatic melanoma leading to its clinical
approval in 2011 [7].

The programmed cell death 1 (PD-1) receptor is an immune checkpoint that acts
by inhibiting downstream signaling of the TCR [37]. PD-1 has two ligands: pro-
grammed cell death ligand 1 (PD-L1) and programmed cell death ligand 2 (PD-L2).
PD-L1 is broadly expressed by cells in response to inflammatory cytokines while
PD-L2 expression is restricted to APCs [38]. In contrast to CTLA-4, PD-1 appears
to have a more restricted effect on regulating immune responses. Blockade of PD-1
appears to preferentially de-repress anti-tumor T cells, leading to greater activity
against tumors and less autoimmune toxicity [39]. PD-1 blocking antibodies,
pembrolizumab and nivolumab, were approved for the treatment of refractory
melanoma in 2014 and advanced non-small cell lung cancer (NSCLC) in 2015. The
PD-L1 blocking antibodies, atezolizumab and avelumab, were approved for
urothelial cancer in 2016 and for Merkel cell carcinoma in 2017, respectively.
Importantly, anti-PD1 antibodies were found to be effective across a number of
solid tumors with microsatellite instability [40], a hypermutated phenotype asso-
ciated with impaired DNA mismatch repair (MMR). High neoantigen load asso-
ciated with the increased mutational burden is thought to make these tumors more
susceptible to T-cell responses after checkpoint blockade.

7.2.5 Oncolytic Viruses

Oncolytic viruses (OVs) are a promising treatment modality for cancer, largely
because of their tumor selectivity, desirable immunogenic properties, and ability to
incorporate transgenes into their genome for targeted delivery to tumors [41]. OVs
have gained significant momentum in recent years due to their immune-stimulating
effects in both the local tumor microenvironment and systemically creating a more
immunologically active tumor for improved immunotherapy responses. The first
clinically approved OV, talimogene laherparepvec (T-VEC), is a genetically mod-
ified type I herpes simplex virus that expresses granulocyte-macrophage colony-
stimulating factor (GM-CSF). T-VEC was approved by the FDA in 2015 as an
intralesional virotherapy for the treatment of metastatic melanoma [42]. In addition
to, and in some respects as a consequence of, the tumor cell-selective replication and
direct tumor cell lysis, T-VEC is capable of producing soluble tumor antigens and
inducing host anti-tumor immunity. Recent combination immunotherapy approa-
ches have exploited OV, which is desirable for “cold” tumors that otherwise show
poor immunotherapy responses. Additionally, newer OV versions have been engi-
neered to express genes, including ones for cytokines that may further improve
tumor recruitment of T cells to enhance anti-tumor immunity of other
immunotherapeutic agents [43].

198 J. K. Lee and S. J. Priceman



7.2.6 Adoptive T-Cell Therapy

7.2.6.1 Tumor-Infiltrating Lymphocytes (TILs)
In the 1960s and 1970s, T cells were becoming widely appreciated for their
potential capacity to treat cancer through preclinical adoptive transfer studies [44].
However, expanding human T-cells ex vivo was only feasible following the
identification and characterization of IL-2 and its use in manufacturing T cells in
culture, as well as providing survival and growth signals to adoptively transferred
T-cells in vivo [45]. In the early 1980s, Rosenberg’s group at the NCI was the first
to document the use of adoptively transferred T cells, ex vivo expanded in IL-2 as
well as in vivo administered IL-2, for the effective treatment of murine lymphoma
[46, 47]. In 1985, they also demonstrated a complete tumor regression in a meta-
static melanoma patient and multiple objective responses in patients following
adoptive transfer of tumor-infiltrating lymphocytes (TILs) with supplemental
administration of IL-2 [48]. These early results of personalized medicine spawned
an entire platform dedicated to isolation and expansion of autologous TILs for
adoptive T-cell therapy. While advanced melanoma has become a poster child for
cancer immunotherapy, TIL therapy has been effective across multiple tumor types,
such as colon and cervical cancers [49, 50], and more recently demonstrated a
complete and durable regression in a patient with metastatic breast cancer with TIL
specificity for selected tumor-associated mutated antigens [51]. Recent advances in
the field have facilitated the identification of unique and immunogenic gene
mutations allowing for selective expansion of TILs. These discoveries will ulti-
mately drive the broader utility of this approach to multiple cancer types.

7.2.6.2 TCR T-Cell Therapy
The identification of specific tumor-associated mutations recognized by TILs, as
well as the difficulties associated with isolating and expanding TILs from many
cancers, led to the idea that specific T-cell receptors (TCRs) could be genetically
engineered into peripheral blood-derived T cells to redirect their specificity toward
the tumor [52]. TCRs are responsible for recognition of TAA peptides presented by
MHC class I molecules. This platform was first successfully demonstrated in 2006
when adoptively transferred T cells engineered to express a TCR specific for the
TAA, MART-1, mediated cancer regression in patients with metastatic melanoma
[53]. A similar approach was used generate TCR-engineered T-cell therapy specific
for the NYESO-1 cancer–testis antigen [54], human papillomavirus (HPV) [55],
carcinoembryonic antigen (CEA) [56], and other TAAs. However, TCR specificity
must be comprehensively examined, as one clinical experience with TCR-
engineered T cells specific for MAGE-A3, a cancer–testis antigen, resulted in
two fatalities from unexpected targeting of a related protein expressed at low levels
in normal tissue [57].
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7.2.6.3 CAR T-Cell Therapy
While TCR-engineered T-cell therapy has tremendous utility in redirecting immune
recognition of MHC:peptide complexes on tumor cells, one major immune escape
strategy used by tumor cells is the downregulation or loss of MHC class I expression
and/or dysfunctional antigen processing and presentation [58], which may limit this
approach for many solid cancers. In the late 1980s, research led by Zelig Eshhar at
the Weizmann Institute in Israel, attempted to redirect specificity of T cells using
chimeric antigen receptors (CARs), termed immunoglobin-T-cell receptor chimeric
molecules at the time [59]. CARs are modular synthetic immunoreceptors consisting
of three major functional components: the antigen-binding domain for redirecting
specificity of T cells, the extracellular nonsignaling spacer, and the intracellular
signaling domain that initiates cytolytic activity. Together, this molecule recapitu-
lates native T-cell effector function, including antigen-dependent cytokine produc-
tion, proliferation, and serial tumor cell killing. The major advantage of this
approach is its ability to target TAAs independent of MHC:peptide complex-
mediated presentation to endogenous or engineered TCR on T cells.

While this CAR approach was preclinically validated with exceptional tumor
killing abilities, early clinical responses were relatively unimpressive. It became
evident that first-generation CARs, which lacked co-stimulation, also demonstrated
limited T-cell persistence and function in vivo. So-called second-generation CARs,
which incorporate intracellular co-stimulatory domains in tandem with the cytolytic
domain, have been extensively evaluated over the last decade both preclinically and
clinically for multiple cancer types [60, 61]. The breakthrough for CAR T-cell
therapy came with the targeting of CD19 antigen for the treatment of B-cell
malignancies, including acute lymphoblastic leukemia (ALL) and non-Hodgkin’s
lymphoma (NHL). In patients with relapsed/refractory ALL treated with
CD19-specific CAR T cells, the complete response (CR) rate has typically reached
over 85% as best outcome, across clinical trials using different co-stimulatory
domains, antigen-binding domains, and ex vivo T-cell manufacturing practices.
Similar, but lower overall response rates have been observed for NHL and for
chronic lymphocytic leukemia (CLL) patients treated with CD19-CAR T cells.
These impressive clinical responses have recently resulted in two landmark FDA
approvals for patients with B-cell ALL (Tisagenlecleucel, Novartis) and diffuse
large B-cell lymphoma (Axicabtagene Ciloleucel, Kite/Gilead). Recent trials have
focused on additional targets for B-cell malignancies, including CD20 and CD22,
as well as targets for other hematological malignancies, including acute myeloge-
nous leukemia (including CD123 and CD33) and multiple myeloma (including
BCMA), which have also shown impressive early clinical responses.

With successes in treating hematologic diseases with CAR T-cell therapy,
broader application of this approach to solid tumors is under intense investigation.
CARs targeting multiple solid tumor antigens have been evaluated to date,
including GD2, ErbB2/HER2, IL13Ralpha2, CEA, and mesothelin [62]. Clinical
responses have not yet reached the levels observed for hematological malignancies,
due, in part, to the unique and challenging tumor microenvironment of solid tumors,
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which can significantly hamper anti-tumor immunity. In addition to second-
generation CARs, third-generation CARs incorporating multiple co-stimulatory
domains, and fourth-generation or armored CARs are also currently being inves-
tigated with the goal of improving the specificity and potency of CAR T cells.
Redirecting effector function with CARs has also been extended to other immune
cell types, including NK cells as well as non-conventional T cells like NKT and
gamma delta (cd) T cells, that are expanded ex vivo for adoptive transfer, or
genetically engineered with CAR for enhanced tumor targeting. CAR therapy,
while demonstrating striking clinical responses for patients with relapsed/refractory
and often bulky disease, has been associated with a variety of toxicities that can be
life-threatening [63]. In addition to the often expected cytokine release syndrome
and neurotoxicities following CD19-CAR T-cell therapy, other severe complica-
tions due to off-tumor on-target effects of CAR T cells have been observed. For
instance, an early trial using CAR T-cells-targeting HER2 resulted in an acute death
of a patient with metastatic colorectal cancer [64]. These examples underscore the
need to further improve CAR design and clinical trial design to achieve maximal
therapeutic benefits for patients with hematological malignancies or solid cancers.

7.3 Big Data-Enabled Precision Medicine

The declining costs associated with next-generation sequencing (NGS) have led to
the increased adoption of focused sequencing panels, whole exome sequencing, and
whole genome sequencing in clinical oncology. As these platforms become
widespread, the major question will be how healthcare providers and patients will
use this information to guide care. For instance, the identification of microsatellite
instability in a tumor by sequencing may become an indication for treatment with
pembrolizumab. However, few genetic mutations found in cancer are otherwise
therapeutically actionable at present. Multiple studies aimed at evaluating thera-
peutics that target specific cancer mutations in a tissue agnostic manner, known as
basket trials, are currently underway to address this gap. Tumor mutational
sequencing leading to the identification of neoantigens specific to tumors has also
brought forth advances in personalized immunotherapies. As an example, person-
alized neoantigen vaccines are now made possible by NGS and computational
prediction of antigenic epitopes. In early clinical trials, this approach has shown the
ability to induce tumor immunity in patients with melanoma [65].

Big data from NGS also provide insight into biomarkers associated with
response or resistance to immunotherapies. High tumor mutational burden appears
to be a strong predictor of objective response, durable benefit, and survival with
checkpoint inhibition therapy [66]. Recent studies have also described transcrip-
tomic features that predict response to anti-PD1 therapy [67, 68]. Additionally,
NGS of tumors has uncovered mechanisms of primary and acquired resistance to
PD-1 blockade, including loss-of-function mutations in Janus kinase 1 and 2
(JAK1/2) and truncating mutations in beta-2-microglobulin (B2M) [69, 70]. Lastly,
NGS may be useful in monitoring immune responses in patients undergoing cancer
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immunotherapy by quantifying immune repertoires. For instance, the diversification
of T-cell receptor immune repertoires has been shown to serve as a biomarker of
clinical response in patients with breast and pancreatic cancer receiving
immunotherapy [71, 72].

Single cell technologies are also rapidly advancing and poised to provide even
larger sets of tumor data. Single cell genomics, transcriptomics, and mapping
technologies have the potential to uncover rich information about interactions
between cell types, genetic mutations, epigenetic states, transcriptional programs,
and clonal and spatial organization within a tumor, both pretreatment and in
response to therapeutic perturbations. The major goal of big data-enabled precision
medicine in the context of immunotherapy is to dramatically increase the 15–30%
overall response rates and the safety profile observed across multiple
immunotherapy approaches. These deep interrogations into responses and resis-
tance patterns will also inform the field on future combination immunotherapy
strategies utilizing multiple treatment modalities listed above to maximize thera-
peutic responses for patients.
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8.1 Introduction

Pancreatic ductal adenocarcinoma (PDAC) is currently the third leading cause of
cancer-related deaths in the USA [1] and will become related to the second leading
cause of cancer deaths by the year 2030 [2]. The location of the pancreas deep in
the retroperitoneum makes early detection difficult since most patients with this
disease will present with non-specific symptoms such as weight loss, abdominal or
epigastric pain, diarrhea, and nausea [3]. As opposed to breast cancer, melanoma,
and prostate cancer, most cases of PDAC are diagnosed in the advanced disease
stage [1]. The five-year survival in PDAC across all stages is 8%, although in
localized disease it is 32% [1]. While there are several promising approaches to
PDAC therapy that are currently under investigation [4], the overall survival
beyond 3 years has not matched that of other malignancies. This is thought to be
related to both the aggressive nature of the disease and its initial manifestation as
metastatic disease in most patients. Therefore, two of the most critical unmet needs
in PDAC are (1) to detect the cancer in its earlier stages while curative intent is still
possible and (2) to be able to rapidly identify the effective therapies for the control
and reversal of this aggressive disease.

The use of imaging in the care of patients with known or suspected PDAC has a
pivotal role to play in this regard. It is not an overstatement to suggest that in the era
of rapid biologic discovery into the hallmarks of cancer combined with the use of
novel precision-based treatment regimens, the need for better non-invasive
approaches to detect, stage, and monitor the disease is urgent. Early detection of
pancreas cancer in high-risk families and swift detection of treatment responses to
novel therapies underlie the belief that the best chance for long-term survival, if not
cure, is based upon reducing tumor burden so that surgical intervention may be
undertaken. While documenting the presence of disease on CT, MRI and ultrasound
will remain an integral part of the care of PDAC patients and high-risk groups [5],
emerging molecular imaging modalities with MRI, PET, and SPECT-based
radiopharmaceutical agents will continue to grow. In order to ultimately conquer
this disease, novel biomarkers that can detect PDAC at its precursor stage and/or
rapidly detect effective responses to avoid ineffective therapies would be highly
desirable. Recently, innovative approaches in the use of imaging fueled by
advanced computer technologies and artificial intelligence (AI) are actively being
pursued. This has led to the burgeoning field of radiomics whereby the high
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information content inherent on cross-sectional images can be extracted to provide
large volume datasets for correlation with the biologic drivers of this disease
(“omics”) and then used to derive clinically useful surrogates via big data
approaches, all elements necessary for precision imaging. This chapter will provide
an overview into some of the novel approaches being considered for the early
detection and treatment response assessments in PDAC using radiomic approaches.
More detailed descriptions of the engines which help drive this new field of pre-
cision imaging can be found in many excellent references [6–9]. It is the authors
hope that this overview will help to stimulate further interest into the development
of innovative technologies and techniques that will contribute to a better under-
standing of PDAC and ultimately conquer this aggressive disease.

8.2 Novel Biomarkers for Evaluation of PDAC

Previous work from Yachida et al. has shown that the development of inciting
mutations in the pancreas eventually leading to metastatic pancreatic disease can
take up to seventeen years prior to initial clinical presentation [10]. This insight
leads one to hope that more sensitive and specific testing may yield better clinical
outcomes. Current biomarker testing for detecting pancreatic cancer is not perfect.
The utilization of the serum marker CA 19-9, the most commonly used blood test
for pancreatic cancer monitoring and detection, has a limited sensitivity, particularly
with small malignancies [11]. Furthermore, 10% of the patient population do not
express the Lewis body antigen needed to have an elevated CA 19-9 [12]. Another
tumor marker that may be utilized to supplement CA 19-9 testing is CEA, which
also carries a modest sensitivity to detecting PDAC [13]. Recently, several novel
biomarkers have been examined to provide more sensitive and specific data
regarding the detection and monitoring of disease activity. For example, the use of
micro-RNAs (miRNA) which are short non-coding RNA that are expressed
uniquely in malignancy may be captured through the use of peripheral blood tests
either from cell-free miRNA or exosomal miRNA assays [14, 15]. Circulating
tumor DNA has also been advocated as a means for screening and detection of
PDAC along with assessment of response [16]. Other approaches have found a
unique profile of branched chain amino acid combinations of isoleucine, leucine,
and valine as being elevated up to 8.7 years prior to the diagnosis of recurrent
pancreatic cancer metabolites in peripheral blood [17]. The ability of using mini-
mally invasive blood tests to yield better sensitivity and specificity for malignancy
is promising but has yet to be fully integrated into routine clinical care. Although
the above methods have their appeal compared to more invasive procedures such as
tissue biopsy, there are limitations related to the content and quantity-of-source
material and uncertainty as to the location and origin of the contributing lesion(s).
Because of these limitations, other methodologies are being explored. It is here that
there has been a growing interest in using imaging as a noninvasive source of
biomarker development owing to its widespread use in patients known or suspected
of harboring cancer. This new field of investigation has been referred to as
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Radiomics as it combines radiologic information with biologic (“omic”) data to
provide better precision in the evaluation of the cancer patient.

8.3 Radiomic Background and Significance for Precision
Medicine

Radiomics allows for the identification, extraction, quantitation, and processing of
the high content information contained within a radiographic image to produce
imaging signatures or phenotypes. When combined with a variety of demographic,
biologic (“omic”) and outcomes driven information surrogate imaging biomarkers
can be developed for clinical use in precision medicine. Such precise imaging
biomarkers have been described in a variety of tumors and conditions including
CNS [18–21], breast [22–24], lung [25–28], liver [29–31], renal [32–35], pancreas
[36, 37], gastric [38, 39], colorectal [40–42], hematological [43] and prostate [44–
48] cancers, and precursor tumor lesions [49–51] as well as for CNS disorders of
dementia, hepatic and pulmonary fibrosis, and cardiovascular disease. Recently, we
and others have found interesting radiomic signatures correlated with the hallmarks
of cancer, prognosis, treatment prediction (especially with immunotherapy), and
early detection of response [52–54].

The underlying mechanism and biologic underpinning which creates a radiomic
signature(s) is currently being tested. Both the tumor microenvironment including
the fibrotic status of the tumor milieu, its proliferative, metabolic and hypoxic
status, and tissue/tumor vascularity appears to contribute to radiomic signature.
Although the complexity of tumor composition and behavior along with the cellular
changes visible only at the microscopic and/or molecular level makes direct cor-
relation with imaging signals difficult, these factors likely contribute to the varied
appearance of lesions on radiographic studies which in turn contribute the radiomic
signature(s). Regardless of the physical, morphological, and biological nature of the
tumor, radiomics can offer fundamental advantages over current techniques for
assessment of malignant lesions and tissues. These advantages include (1) the
availability of radiologic studies due to the necessity to use imaging on a frequent
basis for diagnosis, staging, and monitoring treatment responses in people with
non-superficial cancer lesions, (2) the ability to provide detailed and important
information regarding both spatial and temporal evolution of tumor behavior and
response, (3) the permanent nature of radiographic images compared to the con-
sumption of tissue samples required for analysis obtained through biopsy or blood
samples, (4) the large field of anatomic coverage (whole body) that can potentially
interrogate each and every lesion and diseased organ compared to sampling errors
from lesion heterogeneity of biopsied tissues, and (5) the relative safety profile of
imaging rather than tissue biopsy. Thus, radiomics and the precision that it may
offer has the potential to allow for early detection, treatment monitoring, outcome
prediction, and/or biomarker discovery and shed light into some of the radiographic
changes noted in the hallmarks of cancer as described by Hanahan and Weinberg
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[55]. Additionally, given the heterogenous appearance of PDAC lesions on imag-
ing, its widespread tumor burden in most patients at the time of either diagnosis
and/or recurrence and the frequent use of multimodality imaging required for
patient care creates an ideal testing ground for the use of radiomics in precision
medicine. The essential elements required for the generation of radiomic signatures
are provided in the sections below.

8.4 Essential Elements for Radiomic Signatures

Radiomics requires the extraction of both quantitative and qualitative imaging
signals to generate a meaningful signature in which to correlate with outcomes,
responses, and “omics.” These extracted signal features can be divided into three
major categories: (I) structural (syntactic), (2) statistical, and (3) textural (spectral)
[7, 8, 56].

8.4.1 Structural Elements for Radiomic Signatures

Structural elements include descriptive features like lesion size, volume, and shape
(e.g., spherical, asphericity, etc.), boundary morphology (spiculated, rounded,
well-defined, sharp, ill-defined, amorphous, indistinct, etc.), and spatial enhance-
ment properties (contrast enhancement properties across or within a lesion and
surrounding tissues). These features typically require reader input to make assess-
ments. As such, these features are much harder to extract automatically from the
image datasets and are dependent upon reader training of exemplar cases and are
susceptible to reader experience and judgment. This can lead to higher inter- and
intravariability of image interpretation. In addition, the same lesion may share
overlapping features depending upon whether the analysis is conducted on a single
imaging slice (i.e., on either the axial, coronal or sagittal 2D planes) or whole tumor
and/or organ volume (i.e., 3D reconstructions). For example, a tubular-shaped
lesion may appear as a round lesion on axial images but a cylindrical lesion on
coronal or sagittal views. Nevertheless, this category of elements is one of the first
important steps in radiomic signature generation. An illustration of some of the
structural elements on single slice image is shown in Fig. 8.1.

8.4.2 Statistical Elements for Radiomic Signatures

Statistical features are quantitative by nature and involve the determination of the
grayscale signal intensity value contained within each pixel of a region of interest
(ROI), volume of interest (VOI) or object. These grayscale signal intensity values
can be extracted using either semi-automated or automated computer-based seg-
mentation and automation approaches thereby reducing inter- and intrareader
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variability. Commonly used statistical elements (grayscale signal intensity values)
obtained from the images are referred to as first-order statistical features. They
provide measurements of the mean pixel signal value, standard deviation skewness,
and kurtosis. The results of first-order statistical features are usually displayed either
as single values or as histogram frequency curves (HFC). Either display method
highlights the grayscale signal intensity values within a ROI. The grayscale

Fig. 8.1 Examples of axial contrast-enhanced CT images of PDAC. Panel a shows a poorly
defined spherical-shaped 3.2 cm mass in the head of the pancreas (yellow arrow) on arterial phase.
Panel b is acquired during the portal venous phase (rouge arrow). Note that the tumor is better seen
on venous compared to arterial phase due to the less vascular nature of PDAC [57] compared to
surrounding normal pancreatic parenchymal tissue and delayed tumor enhancement. The white
asterisk highlights a penetrating vascular structure in the mass lesion which can be an important
radiomic finding occasionally associated with enhanced neovascular gene expression. Panel
c represents the axial portal venous phase from a different patient demonstrating a well-defined
2.8 cm hypodense lesion (red arrow) with a pseudocapsule (green arrow). There is internal
haziness seen within the low-density portion of the tumors suggesting mixed areas of viability and
necrosis. Panel d demonstrates histogram frequency curves (HFC) derived from the tumor in each
image. The x-axis represents the density values (Hounsfield Units) of each pixel in the region of
interest while the y-axis is the frequency (fraction) at which each density is observed. Note that the
profile of the yellow and rouge curves overlaps each other except that the yellow HFC is more
peeked (higher kurtosis) during arterial enhancement. The red curve from the second lesion is
shifted to the right (higher density) but otherwise has a similar shape. These HFCs form the basis
for deriving statistical elements for radiomics feature analysis
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intensities are, however, unique to the imaging modality from which they are
derived. These non-deterministic values include signal intensity (SI) units or
apparent diffusion constant (ADC) values from MRI, Hounsfield Units (HU) from
CT and decay-corrected radioactive counts from PET. Since the signal intensity
value derived from each pixel is unique to CT, MRI, US, or PET, they cannot be
directly combined or compared. For example, a lesion or object with central
necrosis may have high grayscale intensity values on T2W MRI but low grayscale
intensity values on contrast-enhanced CT. Nonetheless, the information from each
modality can be collectively integrated to provide a quantitative summary of a
target region’s intensity pattern. Although first-order statistical features are attrac-
tive to use in radiomic analysis because of their simplicity, there is no spatial
information contained within their values.

The use of second-order statistical features can provide spatial information
regarding the distribution of grayscale intensities within a lesion or object. The
second-order statistical features take into account the grayscale intensities of nearest
neighbor pixels in order to provide the necessary spatial information. Frequently
used second-order statistical descriptors include gray level co-occurrence matrices
(GLCM) [58] and gray level run length matrices (GLRLM) [59]. In GLCM, the
frequencies with which the pixel of the same signal intensity are found adjacent to
each other (co-occurrence) is provided as a matrix and is used to describe the
coarseness of signal intensity in a particular direction. In GLRLM, the frequency
that nearest neighbor pixels match each other in intensity or have “runs of same
signal intensity” can be calculated to determine the heterogeneity of signal intensity
within a ROI. For example, if the signal intensity of all pixels in all directions
within a lesion or object is identical, then the run length would be unity (i.e., 1) and
the lesion or object would be considered homogeneous. In contrast, for lesions or
objects in which all pixels in all directions are different, then the run length would
be 0 reflecting extreme heterogeneity. Note that with these methods, the location of
the local or regional zones of uniformity and/or heterogeneity may not be delineated
within the ROI, lesion, or object. In this regard, local binary patterns (LBP) and
other algorithms [60] can be used because of their focus on the patterns of intensity
within a subregion of a ROI which is obtained by applying a centroid mask on top
of nearest neighbor pixels within lesion or object. The signal within the nearest
neighbors is then converted to a binary signal intensity of either greater than or less
than the center pixel within the centroid. In this way can a threshold approach of
statistical analysis be used to estimate local-regional difference in signal within a
lesion or object. An illustration of statistical approaches is shown in Fig. 8.2.

8.4.3 Textural (Spectral) Analysis Elements for Radiomic
Signatures

Texture analysis is a quantitative approach that helps to characterize the local
spatial organization of signal intensity values that are repeated within a ROI by
applying and adjusting filters in multidimensional space yielding a representative
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mathematical model of texture. These elements are usually derived through a
Fournier transformation (FT) of the grayscale values that converts spatial infor-
mation to the frequency space and then a reversal of the process back to the spatial
domain. Typical techniques include discrete orthonormal stockwell transform
(DOST) [61], Gabor filter banks [62] Wavelet transform (WT) [63], Riesz trans-
form [64], Stockwell transform (ST) [65], and Laplacian of the Gaussian [66]. The
later technique uses a Laplacian filtering technique specified as a spatial frequency
ranging from 2 to 6 pixels clustered together to obtain texture information in the
form of mean, standard deviation, skewness, entropy, kurtosis displayed as his-
togram frequency curves (see Fig. 8.1a).

First Order Statistical Elements
Histogram Frequency Curve (HFC)

Second Order Statistical Elements

(a) (b)

Fig. 8.2 Examples of statistical elements for radiomic signatures. Panel A shows a histogram
frequency curve (HFC) from an infiltrating PDAC lesion located in the head of the pancreas as
seen in the axial images below the graph. The x-axis represents the density values (Hounsfield
Units) of each pixel in the region of interest while the y-axis is the frequency (fraction) at which
each density is observed. First-order statistical values as displayed in the table below the HFC are
derived from this curve and include mean pixel value, standard deviation (SD), mean positive pixel
value (MPP which represents average value of those pixels with HU > 0), skewness, and kurtosis.
Entropy is derived from the natural log of the pixel signal over the area of the ROI and represents
heterogeneity of a lesion. The axial CT image at the bottom right contains a fused color overlay
representing the spatial distribution of pixels containing positive pixel values (red) or negative
pixel values (blue) derived from a textural analysis platform (TexRad®, Essex, UK). Panel B
demonstrates the logic behind second-order statistical elements. Each circle represents the signal
intensity of individual pixels. The darker the shade of gray, the higher the signal intensity. In this
example, pixel elements of only three discrete intensities are represented in the boxed areas.
The GCLM provides an estimate of the frequency that pixels of near identical intensities are found
adjacent to one another (nearest neighbor co-occurrence) while the GLRLM estimates the
frequency at which runs of neighboring pixels of near equal intensity are found. Unlike first-order
statistical elements, second-order statistical elements contain information regarding the spatial
relationships of pixels
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8.4.4 Radiomic Workflows

The methods of feature extraction outlined above have often been used in radiomic
studies because they are intrinsically simple to calculate and can rapidly produce a
large number of imaging traits in which to apply in a high-input manner for sta-
tistical correlation and model building using bioinformatic approaches and machine
learning (ML). In order to apply these elements successfully for precision imaging,
a radiomic workflow is needed.

The radiomic workflow is a multistep process (Fig. 8.3). These steps include
(1) image acquisition with or without spatial registration, (2) lesion and/or object
segmentation, (3) voxel resampling (discretization) to limit the range of intensity
values, (4) feature extraction, (5) feature analysis, and (6) model building for
biomarker testing, training, and validation. Ideally each step should be carefully
controlled and automated, if possible, to provide the robustness needed for clinical
application and to control for variations due to scanner-related differences,
patient-derived factors variations of lesion, organ, and/or body function, and sta-
tistical noise due to data overfitting which has historically limited the accuracy and
precision of many imaging biomarkers. The importance of variations in imaging has
been tested both using phantom studies and in the clinical setting. For example,
Makin et al. [67] created a texture phantom to determine the variability in radiomic
features across 17 scanner sites and compared it to radiomic analysis in cases of
non-small cell lung cancer (NSCLC). Their study demonstrated that variability in
radiomic features extracted from phantoms was comparable to the variability
observed with the same radiomic features in NSCLC tumors meaning that much of
the statistical elements extracted from radiomic evaluation can be related to tech-
nical rather than biological differences. In addition, several reports have found a
high degree of test–retest instability between imaging scans [68, 69]. For example,
in one study of 219 radiomic features in NSCLC on CT, only 30% of them had
intraclass correlation coefficient >0.9 when scans were repeated 15 min apart [69].
In order to reduce such variability in the future, the need for acquisition stan-
dardization, phantom qualification, and patient preparation harmonization will be
important aspects for ensuring the robustness of radiomics in the clinical setting.

8.5 Precision Imaging with Radiomics in the Evaluation
of Pancreas Cancer

8.5.1 General Comments

There are several interesting features of pancreatic cancer that make precision
imaging with radiomic feasible. These includes both classical and atypical
appearances of primary and metastatic lesions on CT, MRI, and PET and their
changes with effective therapies (either shrinkage and/or developing necrosis on
CT/MRI and with improvement in free water diffusion and hypometabolism on
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FDG PET) versus ineffective treatments with the associated development of
recurrence and/or treatment resistance (lesion growth, reduction in free water dif-
fusion from increased cellularity on MRI and hypermetabolism on FDG PET).

Conventional imaging plays an essential role in PDAC given the reported sen-
sitivity for detection of PDAC ranges from 76 to 96% for [70–75] depending on
tumor size. Representative appearances of PDAC on multiphasic CT/MRI include a
hypoattenuating (low density) mass on CT, hypo/hyperintense signal abnormalities
on MRI (T1W/T2W hypointensity/hyperintensity, respectively), and hyperme-
tabolic uptake on FDG PET. Each of these findings can be associated with pan-
creatic duct dilatation and upstream atrophy of the pancreas. However, up to
approximately 20% of subjects do not have a distinct low-density mass on CT [75,
76]. The lack of mass detection on CT is presumably due to the well-differentiated
nature of these tumors with lower tumor cellularity and less necrosis at the
microscopic level [77] which provides an opportunity for using radiomic signatures
to detect malignant transformation. In the liver, space occupying lesions (hypoat-
tenuating mass lesions on CT/MRI with/without central necrosis most conspicuous

Fig. 8.3 General workflow for radiomic signature development beginning with (1) image
acquisition, (2) lesion segmentation (blue outlines of PDAC from two separate subjects, (3) voxel
resampling to reduce noise and normalize pixel grayscale intensities, (4) feature extraction (both
3D volumetric lesion shape determination and texture analysis profiles obtained), (5) feature
analysis with the various components of first- and second-order statistical evaluation and additional
ingredients integrated for imaging signature discovery and validation, and (6) final step of model
building which explores the relationship between radiomic traits and clinical and molecular
associations
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on the portal venous phase and/or T1W-T2W hypo/hyperintense focus, respec-
tively) is commonly observed. These lesions may or may not have distinct
boundaries, contain pseudocapsular rinds, have penetrating vascular branches
leading into the center of the lesion, and display rim-like peripheral enhancement in
a corona-like pattern during both the arterial and portal venous phases. Some of
these features have been shown to represent important radiomic traits for
microvascular thrombosis and tumor invasion [29] in HCC and similar work is
ongoing in pancreas cancer.

In addition to the lesion’s statistical and textural feature elements that might be
extracted for radiomic analysis, indirect structural features of pancreatic tumors
including pancreatic and/or common bile duct dilatation especially in tumors within
the head of the pancreas (so-called double duct sign), abrupt pancreatic duct caliber
change, and atrophy may be important components for prediction/prognosis and aid
in early detection especially in high-risk patients for PDAC [78–82]. In addition,
many patients with PDAC have associated inflammatory changes in the pancreas
due either to the obstructing nature of tumor lesion, stent reaction, and/or super-
imposed cholangitis. The imaging changes affiliated with inflammatory changes can
be difficult to distinguish by conventional means but may be more readily delin-
eated using a multifeatured extraction (radiomic) approach as has been demon-
strated in other tumor types [83]. One additional unique feature of radiomic analysis
on MRI imaging that can also be used for diagnosis and monitoring treatment
response involves the detection of free water molecule movement on diffusion
weighted images (DWI). This highly quantitative MRI sequence obtained during
most standards of care MRI procedures allows for the calculation of apparent
diffusion constant (ADC) maps. Due to the increased cellularity and/or fibrosis in
many tumors, lower ADC values are noted compared to higher ADC values for
normal tissue and/or necrosis [84, 85]. Since pancreas cancer can incite a fibrotic
reaction, the movement of water can be restricted on ADC maps and used for
radiomic trait discovery.

The following sections will illustrate some specific uses of radiomic evaluation
for PDAC including examples of early detection and characterization of the tumor
microenvironment and monitoring of treatment response.

8.5.2 Early Detection for PDAC

Current efforts have focused on developing screening programs for earlier detection
of pancreatic cancer. The International Cancer of the Pancreas Screening (CAPS)
Consortium is one such organization composed of experts from several different
disciplines including epidemiology, genetics, gastroenterology, radiology, oncol-
ogy, surgery, and pathology examining the literature and providing recommenda-
tions on screening individuals thought to be at risk for developing pancreatic cancer
[86]. A prospective study of 51 individuals who presented to a single clinic at
Columbia University Medical Center/New York Presbyterian Hospital that helped
formed the basis of the recommendations of the CAPS consortium [87] was able to
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classify patients according to risk factors for PDAC. In this study, individuals were
stratified into different risk categories by the presence of the age and number of
relatives affected with pancreatic cancer along with the presence of germ line
mutations associated with a risk of pancreatic cancer (i.e., BRCA 1/2, CDKN2A,
those with Lynch syndrome, etc.). Individuals were offered to undergo imaging
tests through MRI/MRCP, blood tests through CA 19-9 and glucose tolerance, and
endoscopic ultrasound if indicated. Up to 40% of asymptomatic individuals had
actionable findings including potentially malignant disease (two were found to have
pancreatic cancer—one localized and one with metastatic disease along with two
cases of ovarian cancer, four with intraductal papillary mucinous neoplasm, one
with thyroid cancer, and one with neuroendocrine cancer [87]). A more recent study
found that individuals with CDKN2A germ line mutations had an overall survival
benefit with yearly EUS along with MRI/MRCP [88]. Currently, there are no
guidelines for pancreatic cancer screening from the American Cancer Society,
National Comprehensive Cancer Network (NCCN), or the United States Preven-
tative Task Force (USPTSF) [89]. Therefore, further work in detecting pancreatic
cancer utilizing what is available in the clinic with an eye toward promising bio-
marker research is needed to change the current paradigm of pancreatic cancer
detection. Recent experience at the author’s clinical site is currently offering a
holistic approach to the care of these families at risk including the adoption of the
prior guidelines from CAPS along with other published studies through the use of
MRI/MRCP along with blood testing and emphasis on the tumor markers CEA and
CA 19-9. Individuals are presented weekly at a tumor board composed of radiol-
ogists, gastroenterologist, surgeons, genetic counselors, oncologists, nurses, and
social workers. If indicated, the individual may be recommended to undergo further
evaluation with an EUS procedure or surgery. To date, over 180 individuals have
been enrolled in the screening program with one case of pancreatic cancer and one
case of melanoma detected.

Radiomics may offer a distinct advantage over other techniques in early detec-
tion programs. Due to the slow nature of malignant change over a 18-year period
prior to the appearance of PDAC on cross-sectional imaging, a change in the texture
pattern may be noted (Fig. 8.4) prior to its manifestation on imaging. Borazanci
et al. [89] are currently applying both 2D and 3D radiomic techniques for detection
of these changes and integrating the finding with other liquid biomarkers. Fur-
thermore, the integration of advanced imaging tests, such as the utilization of
hyperpolarized [1-13C]-pyruvate magnetic resonance spectroscopy which was able
to detect early changes concerning for pancreatic cancer in a preclinical model,
warrants further study in individuals with pancreatic cancer [90].

A precursor lesion can be found in up to one-third patients who develop PDAC.
Referred to as intraductal papillary mucinous neoplasms (IPMNs), these cystic
lesions can undergo malignant transformation if left unmonitored. Detected early,
however, they can be removed to prevent the development of PDAC. Not all
IPMNs, though, undergo malignant transformation, and many can be followed with
imaging for documentation of long-term stability. Given the cystic nature of the
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lesion, MRI is the more superior modality for the detection and longitudinal
assessment in patients harboring these lesions.

The use of radiomics to characterize IPMN lesions has yielded interesting results
compared to established Fukuoka guidelines for determining the malignant
potential of IPMNs [91]. Fukuoka guidelines define high-risk stigmata and worri-
some features to assess malignant potential and need for surgical intervention.
These features include obstructive jaundice, enhancing mural nodules, pancreatic
duct dilatation > 10 mm, cysts > 3 cm, thickened enhancing walls, abrupt changes
in PD caliber, distal pancreatic atrophy, pancreatitis, and lymphadenopathy [91].
Since surgical resection of IPMNs is not a gentle procedure with its attendant
complications of infection/abscess, bowel obstruction, pancreatic duct leakage and
pancreatic insufficiency, any biomarker(s) that can accurately distinguish high-risk
from low-risk lesions would be attractive. Recently, Hanania et al. correlated
radiomics signatures of IPMN to pathology. They found that GLCM statistical
features within the wall of the cystic lesions differentiated low-grade and high-grade
lesions better than the Fukuoka criteria with an AUC of 0.82 at a sensitivity of 85%
and specificity of 68% suggesting the advantage of radiomics compared to more
conventional grading systems [92]. However, additional work including the inte-
gration of molecular tests on the fluid and cellular contents found within these
cystic lesions (e.g., CA19-9, miRNA, Kras, etc.) with the radiomic signature is
needed to better define the high-risk features for PDAC development. Although
MRI/MRCP with the use of low molecular weight gadolinium (LMWG) contrast

Fig. 8.4 An example of the potential use of radiomics for the early detection of pancreas cancer.
Since molecular events may occur several decades before the manifestation of PDAC on
conventional imaging, the evaluation of the pancreas texture may provide some evidence of
transformation. In this subject, a retrospective look at the texture profile in pancreas tissue in 2008
(green circles) noted a difference in the histogram frequency curve in the body of the pancreas
(downward peaks) compared to the pancreatic neck tissue. A 2.1-cm PDAC subsequently
developed in the body of the pancreas 8 years later (white circle)
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agents in high-risk patients is the most appropriate manner to screen these indi-
viduals, theoretical concerns have been raised regarding the long-term effects of
LMWG agents potentially causing neurotoxicity due to its accumulation in the
dentate nucleus and globus pallidus [93]. As the clinical significance of brain
accumulation remains unclear, additional work will be needed.

8.5.3 Monitoring Treatment Responses

The only truly objective biomarker for the assessment of treatment response in solid
tumors is tumor shrinkage on imaging and/or clinical examination. Although the
Response Evaluation Criteria in Solid Tumor Guidelines (RECIST v1.1 [94]) have
been applied in almost all pivotal trials since its publication as a surrogate for
anti-tumor activity, it suffers from the lack of sensitivity especially when targeted
and novel therapies are used. Indeed, many treatment regimens can lead to tumor
death without tumor shrinkage, and when shrinkage does occur, it can be slow to
develop. Therefore, better methods are required to demonstrate effective therapies
and more rapid monitoring of results. This is particularly true in PDAC in which the
median progression-free survival in frontline therapy is approximately 8–11 months
[95, 96]. Thus, a rapid detection and assessment of response (RaDAR) system is
needed. In PDAC, Korn et al. have shown that the use of FDG PET can be an
effective means of assessing early response to gemcitabine and nab-paclitaxel [97].
Indeed, patients with an early metabolic response in patients with metastatic PDAC
(mPDAC) on FDG PET at 8 weeks have significantly better progression-free sur-
vival and overall survivals than patients without an early metabolic response.
Furthermore, Hindorani et al. demonstrated [98] that early improvements can be
noted (sometimes within days of administration therapy) in FDG PET metabolism
within weeks of receiving gemcitabine-based therapy in combination with drugs
that alter the tumor microenvironment. Although compelling, not all patients with
mPDAC can obtain an early FDG PET scan due to local insurance carrier policies.
Therefore, other means of developing a RaDAR system seem warranted.

The exploration of radiomic signatures in this environment seems ideal for
detection of early changes in tumor texture. Several investigators have focused
efforts on ADC maps and histogram analysis to show treatment responses in head
and neck and CNS tumors [99, 100] using first-order statistical radiomic traits of
kurtosis and skewness, as well as perfusion metrics (K-trans skewness) as predic-
tors of PFS and OS. Furthermore, Zhang et al. [101] evaluated 20 subjects with
esophageal cancer to predict pathologic response to neoadjuvant therapy using
several multivariates and found that radiomic models contributed to pathologic
prediction compared tumor size and straightforward SUV assessments on
FDG PET. Current efforts are being focused on using a similar approach in PDAC.

Like these other tumor types, radiomic response assessments have shown early
changes in the textural pattern in treatment response in mPDAC within 4–8 weeks
of onset of chemotherapy in front-line subjects on CT (Fig. 8.5), in the neoadjuvant
setting and in therapies that can alter the tumor microenvironment (Fig. 8.6). In
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addition, distinctive patterns of favorable healing have recently been described by
Amer et al. [102] who demonstrated that patients in whom their pancreatic lesions
develop more distinct borders after treatment have better outcomes (PFS and
event-free survival) than those lesions with ill-defined margins [102]. Despite these
encouraging examples of radiomics, several key areas need to be addressed prior to
adoption of this form of precision imaging into the clinical environment beyond
testing for sensitivity, specificity, and accuracy including (1) earliest time that a
significant radiomic change can be seen, (2) the best modality or combination of
modalities to use for identifying a radiomic response signature, (3) the best
bioinformatic model(s) to provide the most accurate prediction of response either
alone or in combination with other biomarkers, (4) the universal applicability of the
radiomic response signature in frontline versus recurrent/resistant line therapy and
whether the signature is tumor specific and/or treatment specific, and (5) issues
regarding the impact of quality-of-life impacts and economic benefits of applying
the signature to the general or selected PDAC population. Certainly, a well-planned,
well-executed, prospective trial(s) will be required to address almost all these
issues.

Fig. 8.5 Early response to therapy using radiomic quantitative textural analysis. Radiomic
changes within 4 weeks of start of combination therapy (gemcitabine, nab-paclitaxel, and
cisplatin) in a patient with metastatic pancreas cancer are depicted. A 7.2-cm hypodense lesion in
the body of the pancreas was noted prior to therapy. The lesion remained stable to slightly smaller
over time, but the texture profile changed substantially within 4 weeks of starting treatment. There
was a clear shift in the HFC toward necrosis
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8.5.4 Use of Radiomic Signatures for the Prediction
and Prognosis

Many publications on radiomics have focused upon the prognostic and predictive
value as a biomarker. A prognostic biomarker provides information about the
patient’s overall cancer outcome, regardless of therapy, while a predictive bio-
marker provides information on the effect of a therapeutic intervention. Both
prognostic and predictive radiomic biomarkers have been described in a variety of
settings in solid tumor and lymphoma [43, 103–106]. Recently, the ability to predict
response to immunotherapy using a radiomic approach has been reported. This type
of imaging biomarker may be useful in the future as work focused on converting
immune isolated tumors such as PDAC into inflamed lesion that would respond to
immune therapies is an area of great interest. An example of using quantitative
textural analysis (QTA) to predict response to PDL-1 inhibitors from our own
radiomics laboratory is shown in Fig. 8.7.

Fig. 8.6 Evaluation of tumor texture to determine context of vulnerability to treatments that can
alter the tumor microenvironment. Two subjects were treated with chemotherapy + TME
disrupting agents. The subject on top had a*4 cm PDAC in the head of the pancreas (white circle
and brown arrow) that resolved within 6 months of treatment as did their hepatic metastasis. The
subject on the bottom had both pancreatic (not shown) and hepatic metastasis but did not see any
benefit from therapy (white circles and green arrow). Texture analysis on the baseline scan showed
highly similar HFCs between responders and non-responders. However, first follow-up scan
(8 weeks after therapy) demonstrated differences in tumor profiles (note the shape and shift of the
HFC and highlighted pixel elements (color images). Such information could be used to help
rapidly detect responses when conventional imaging remains stable. RIR = regional index of
response
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In regard to the radiomics of PDAC, Sandrassegaran et al. applied quantitative
textural analysis to provide a prognostic signature for overall survival in subjects
with mPDAC and found that lesion with high kurtosis and mean positive pixel
values had poor outcomes [107]. Borazanci et al. have demonstrated that radiomic
signatures using texture analysis can predict response to PARP inhibitors [108].
Furthermore, preliminary work has shown that texture features of entropy and
kurtosis in the primary tumor in mPDAC are associated with interchromosomal
heterogeneity and that the textural features of the adjacent pancreas provide
prognostic information regarding overall survival [36].

8.5.5 Limitations of Radiomics in Precision Imaging

Despite the promise of radiomics in a variety of settings in PDAC, there are sig-
nificant limitations and challenges that must be addressed before radiomics can be
fully implemented clinically. The degree of radiomic signature stability which can
occur even within single institutional reporting can be problematic as can overfitting
the data. For example, Chalkidou et al. [109] recreated a dataset from 100 features
obtained in 21 esophageal cancer patients and found that about half of the recreated
features had reasonable accuracy for predicting OS (AUC 0.68–0.80). Such high
degree of false discovery rate can be overcome either using statistical corrections or
larger number of patients. The lack of standards and harmonization across tumor
types, patient preparation, image acquisition, data sampling, feature extraction,
feature analysis, clinical and pathologic gold standards, and model building also can
contribute to the limitation of using radiomics for precision imaging. Table 8.1
provides a more comprehensive list of the current issues facing radiomics.

Fig. 8.7 The feasibility of using of quantitative texture analysis to evaluate baseline scans for
sensitivity to immune check point inhibitor therapy. Radiomic was used to predict which subjects
may respond to immunotherapy with PD-L1 agents. Baseline CT scans from 28 subjects with solid
tumors amenable to check point inhibition were evaluated retrospectively using quantitative
textural analysis to determine if there were potential imaging biomarkers that would predict
response. The HFC shows different texture profiles between responders and non-responders with
the texture trait of MPP being the most sensitive to distinguishing between the two groups
(p = 0.41). Prospective clinical trials will be needed to translate this signature for clinical use. Such
imaging biomarkers may be of great utility in exploration of therapeutic strategies of converting
immune isolated tumors such as PDAC into inflamed lesions
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Table 8.1 An overview of limitations of each component of radiomic analysis and strategies for
overcoming them

Radiomic properties
[relevant references]

Limiting factor

Tumor-specific factors

Tumor type • Radiomic signature may only be specific for the tumor type under
consideration and not applicable to other tumor types

Lesion location [110] • Lesion location may influence radiomic signature due to tumor
motion (e.g., lung or upper abdomen), imaging artifacts (e.g.,
metal or air or improper attention correction) and partial volume
effects from surrounding tissues

Lesion size and
morphology [111–113]

• Small lesions may have poor signal and count statistics
(especially with PET radiomic analysis). Minimum tumor size
(volume) suitable for radiomics has been reported in ranges from
>3 to 10 cm3

• Image shape, boundaries, and borders can influence the
placement of region and volumes of interest and affect
segmentation programs. Standardization of common lexicon and
definition of tumor margins are needed

Organ involvement • Background organ (liver, lung, bone, brain) may affect the lesion
texture measurement creating different radiomic signatures based
upon tissue background

Pathology and
molecular tests as truth
standards [16]

• Significant variability can be seen during pathologic review of
tissue data (local site vs central review) as well as during
molecular analysis which can influence surrogate imaging
biomarker performance

Image acquisition parameters

Scanner configurations
[8]

• Radiomic feature quantification is sensitive to acquisition modes,
reconstruction parameters, smoothing, and segmentation

• Scanner performance reporting is lacking in most studies to
assess the influence of equipment differences on radiomic
signatures

Modality and
acquisition parameters
[8]

• Radiomic signatures across different modalities cannot be
directly compared

• Phantom standardization and performance characteristics have
not been used or not reported in most studies to help standardized
image signal intensities across subjects and centers

Lesion analysis

ROI placement and
lesion definition [114,
115]

• ROI placement upon a lesion or object of interest can influence
radiomic signatures. These factors include ROI size, shape, and
boundaries

• ROI placement by manual versus semiautomatic region growing
and tumor contouring approaches can each introduce bias based
upon reader preference versus segmentation algorithms

Single lesion versus
multiple lesions
combination
[8]

• The influence of using single lesion versus multiple lesion inputs
into a radiomic analysis is unknown

(continued)

226 R. L. Korn et al.



Table 8.1 (continued)

Radiomic properties
[relevant references]

Limiting factor

Feature analysis [112] • Multiple radiomic features can be extracted from an image
ranging from tumor size to higher order textural (spectral)
features, and many of the methodologies used to capture this
information have not been standardized

• The same radiomic features may be implemented differently
based upon the use of different platforms

Radiomic platforms [67] • Variability across platforms based upon open source code,
commercial products, and in-house systems without clear
understanding of the advantages and biases of one platform over
another

• Different platforms can lead to different feature extraction outputs
even when the same lesion is tested

Data resampling [106,
113, 116]

• Data resampling of image signal intensities to reduce the possible
number of grayscale values is needed for data extraction and
noise reduction but can potentially average out important and
subtle radiomic signals

Statistical model considerations

False detection rate
[109, 117]

• Selection bias from the use of more radiomic features than the
number of patients potentially can lead to increased false
detection rates. In general, for each significant radiomic trait, a
minimum of 10 patients is needed to avoid false detection report

• Adjustment for multiple hypothesis testing is not always
performed but is recommended to reduce false detection rate

Test-retest variability
[68, 69, 118, 119]

• Significant variation in pixel intensity values can be seen with all
modalities based upon slice thickness, scanner settings, contrast
phase of enhancement, and reconstruction algorithms.

• Up to 40% variability in signal intensities can be encountered
between scan session even within 15 min of each other

Protocol-related issues

Protocol design • Most publications have been from single-center retrospective
studies. Large prospective multi-institutional studies are needed
to validate radiomic signatures for translation into the clinic

• Well-documented image protocol acquisition parameters are
lacking in most studies

Reader reproducibility
[105]

• No rigorously tested multireader paradigm has been conducted to
date to assess the influence of reader bias. This may be less of an
issue with the use of automated segmentation algorithms

Other • Lack of cost-effectiveness analysis
• Open source data to facilitate comparison across platforms,
large-scale discovery, and deep learning analysis are limited

• Impact of radiomics on reader Workflow and efficiency is lacking
• Lack of standardized lexicons and reporting
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8.6 Future Directions

The use of radiomics illustrates the power of quantitative imaging, data extraction,
and model building to provide potentially predictive, prognostic, biologic, and rapid
response imaging biomarkers in the care of patients at risk or harboring PDAC.
Platforms that can drive this technology are leading the way in precision imaging.
The use of artificial intelligence (AI) to be feed big datasets will be needed to
establish robust imaging biomarkers in the next generation of discovery using
machine learning technologies. Machine Learning (ML) is a branch of AI which
provides for meaningful mining of patterns that is invisible to routine human
endeavors. As ML moves from simple principles of learning, training, and vali-
dation to deep learning techniques using neuro network approaches, a wave of new
biomarkers and decision-making tools will be forthcoming. Diagnostic imaging has
always been on the forefront of these advances. For example, several
computer-assisted devices (CAD) are available for clinical use today for detection
of breast cancer, colonic polyps on CT colonography, and quantitative dementia
analysis. Others have begun to use ML to automatically detect and segment organ
systems on cross-sectional images. Current efforts are underway to apply these
technologies for the detection of pancreatic tumors [120].

Finally, two additional areas of future efforts in precision imaging of PDAC
include (1) 3D virtual reconstruction of cross-sectional images to provide a detailed
and comprehensive look at the relationship of tumor lesions to surrounding struc-
tures for precise surgical planning and radiation therapy (especially in the era of
robotic surgeries and high-precision radiation therapy treatment planning systems)
and (2) molecular imaging with radiopharmaceuticals that specifically target PDAC
tumor or their host-dependent cells. These radiolabeled agents are directed against
such targets as CA19-9, PAM-4, EGFR2, and others. Of course the newly approved
68Ga-Labeled Octreotide agents for the detection of NET tumors and its companion
theragnostic agents (177Lu-DotaTate: Netspot) are making a large impact in cancer
care. The development of these agents will no doubt continue to grow over the next
decade.
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9.1 Background

The advent of next-generation sequencing (NGS) platforms made it possible to
sequence DNA more efficiently and economically than Sanger sequencing. In
addition, the application of NGS in cancer genomics allowed for a deeper under-
standing of the underlying genetics and pathogenesis of cancer. The human body is
composed of trillions of cells that belong to approximately 200 different cell types;
however, individual cells from defined cell types are diverse with unique expression
profiles [1]. Many cell types/subtypes have few reliable markers that can be used for
purification which is in part due to the fact that even cell types with well-established
markers contain diversity [1]. Standard techniques for cancer analysis involve
averaging signals from mixed populations of cells, which may mask or hide
rare/small tumor clones and subclones that contribute to cell diversity [2]. However,
with the use of single-cell genomics, the underlying genetics, expression levels, and
epigenetics of every gene in the genome can now be analyzed across thousands of
individual cells.

The first report of RNA transcriptome sequencing of single-cell mammalian cells
occurred in 2009, and the first report of single human cancer cell DNA genome
sequencing occurred in 2011 [2, 3]. Since that time, studies on single-cell exome
and whole genome sequencing in varying types of cancers including renal,
myeloproliferative, colon, lung, glioblastoma, breast, and prostate have been con-
ducted [4–11]. The original single-cell sequencing method combined flow sorting,
whole genome amplification, and NGS to generate genomewide datasets from
single cancer cells; however, it had only *10% physical coverage of a single cell’s
genome, sufficient for measuring large-scale copy number changes, but insufficient
for resolving mutations at base-pair resolution [2]. Since that time, several other
methods have been developed that can achieve high coverage (>90%) from single
mammalian cells.

The data now available by single-cell sequencing has revolutionized cancer cell
biology. The underlying mechanisms of how tumor and clonal diversity contribute
to cancer biological processes remain largely unknown. Intratumor heterogeneity,
clonal evolution, underlying mechanisms of tissue invasion, metastasis, and
response to cancer-related therapies can potentially be elucidated by investigating
molecular signatures at the single-cell level (Fig. 9.1). Tumor diversity is impacted
by selection pressures, which can impact the underlying genetics of a cancer cell
population. Examples of selection pressures include effects of the immune system,
hypoxia, nutrient deprivation, geographical barriers, pH changes, and chemother-
apy [2]. Understanding the underlying genetics of intratumor heterogeneity at the
single-cell level has the potential to reveal cancer therapy resistance mechanisms
that are lost at the bulk level. Single-cell tumor phylogenic evolutionary trees have
the potential to reveal driver mutations which can be used for targeted cancer
therapies for those small populations of cells that harbor resistant mutations after
treatment [12].

238 J. E. Wiedmeier et al.



Identification of cancer therapy resistance mechanisms at the single-cell level may
also reveal novel mutations after induction of therapeutic agents (which generate
clonal and subclonal populations of cells). In fact, NGS studies on single-cell muta-
tions that drive tumorigenesis have revealed that resistancemutations vary from tumor
to tumor [13]. Single-cell sequencing also has the potential to illuminate the mech-
anisms behind metastatic dissemination. For instance, several groups have used cir-
culating tumor cells (CTCs) to study genomic and transcriptomic data frommetastatic
colon cancer, lung adenocarcinoma, and melanoma [2].

Bulk tumor gene expression studies are composites of transcriptional changes of
heterogeneous cell populations; however, analysis of tumor cell expression at the
single-cell level expands average tumor expression profiles of specific cell types,
including non-malignant stromal, immune, and tissue-specific cells. In addition,
single-cell transcriptomics aids in the detection of novel variants after treatments that
may potentially drive drug resistance or serve as biomarkers of therapeutic success
[14]. Furthermore, single-cell sequencing can detect low abundance of expression
and/or novel RNA variants that are not detectable in bulk cell populations.

Intra-tumor Heterogeneity 

Clonal Evolu on
Metastasis 

Tissue Invasion

Response to Therapy

(a) (e)(c)

(b) (f)(d)

Chemotherapy 

Crosstalk Between Cells 

Endothelial Cells

Cancer Cells

Neutrophils

Adipocytes

Fibroblast

B Cells CD8+ T 
Cells

Regulatory  T 
Cells

o2

Fig. 9.1 Applications of single-cell sequencing. Mechanisms behind a Intratumor heterogeneity,
where different tumor cells show distinct genotypic and phenotypic variability (represented by
different colored cells), b clonal evolution, or genetic diversification and clonal selection where
different colored cells represent genetic changes, c tissue invasion, where mutant cells invade
adjacent tissues (pink cells) with the potential to d travel to different sites, or metastasis, e crosstalk
between cells with newer technologies, and f response to cancer-related therapies and subsequent
clonal evolution can be elucidated by investigating the molecular signature at the single-cell level
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9.2 Single-Cell Sequencing Modalities

9.2.1 Sample Type and Preparation

Current single-cell technologies assay a single cell’s gene expression, DNA vari-
ation, epigenetic state, and nuclear structure (see Table 9.1). In order to analyze
genomics at the single-cell level, cells need to be isolated from extracellular matrix
and cell–cell adhesion for downstream processes. One of the major limitations of
single-cell sequencing from solid tissues includes unbiased disaggregating of the
tissue into a suspension of single cells [15]. This is important as preferential pro-
cessing or lysis of one cell type over another may skew data generation and thus
analysis of results.

Single cells can be obtained from virtually any tissue, and current research
focuses on circulating blood cancer cells, solid tumors, or circulating tumor cells
(CTCs). Single cells from solid tumors can be obtained either following surgical
removal, sampling/biopsy of the primary tumor or other organs with overt metas-
tasis, or bone marrow aspiration. Solid tumors, especially in the invasive metastatic
stages, are also known to shed cells into systemic circulation. These cells in the
patient’s blood stream are known as circulating tumor cells (CTCs), and those that
disseminate to distant organs are termed disseminated tumor cells (DTCs).

Different methods for isolating single cells of interest from a suspension have
been developed. Early studies used manual methods of cell isolation, using spe-
cialized pipettes or micromanipulation devices to isolate single cells [17]. This
method of single-cell isolation has low throughput but can be used when a small
number of cells are to be analyzed [22]. Other methods include fluorescence-
activated cell sorting (FACS), magnetic-activated cell sorting (MACS), laser capture
microdissection (LCM), and microfluidics, all of which can generally be used for
larger numbers of cells. Microfluidics is a common method of single-cell isolation
and allows for high throughput investigation of complex cellular systems using
nanoliters of material. Microfluidics technologies isolate and encapsulate single cells
in reaction chambers or droplets followed by standardized and automated nanoliter
reactions, including barcoded sequence library prep for RNA and DNA sequencing.
Commercially available microfluidic devices include Fluidigm C1 system, the 10�
Genomics Chromium, and Illumina Biorad SureCell system [23].

9.2.2 Single-Cell DNA Sequencing

Whole genome amplification (WGA) followed by DNA sequencing identifies the
underlying genetics and mutation frequencies of a single cell. Various methods for
DNA whole genome amplification (WGA) at the single-cell level are available
(multiple displacement amplification (MDA), PCR, or combination of both, see
Table 9.1). These methods can now achieve >90% coverage of a single-cell
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genome, and mutations can be detected at a single base-pair resolution [17, 2].
Technical challenges remain, however, including effective isolation and lysis of
single cells, uniform amplification of whole genome, quality assessment of single-
cell amplified genomes, sequencing library preparation, and data analysis [18].

Detection of point mutations or base substitutions in single cells has to be
discriminated from polymerase base infidelities and sequencing errors. Such errors
can occur during the WGA process, including allelic dropout (one allele is not
amplified), transcripts can be over or under amplified, false-positive errors due to
the infidelity of the DNA polymerase, and uneven amplification [2, 12]. By nature
of the amplification process using DNA polymerases, errors that occur in the initial
rounds of amplification are then inherited by all subsequent molecules [17].
Single-cell genomewide DNA sequencing is more challenging than single-cell
transcriptomics due to the fact that there is simply less template available for
single-cell genomics with DNA sequencing. Whereas single cells contain thousands
of copies of each mRNA molecule, there are only two copies of each chromosome
(or gene for that matter), and therefore only two template DNA molecules for WGA
reactions.

9.2.3 Single-Cell RNA Sequencing

Single-cell RNA sequencing essentially reveals the transcriptional status at the
single-cell level. Whole transcriptome sequencing, or RNA seq, where exclusively
messenger RNA is assayed from single cells, is the most widely used method of
single-cell analysis [24, 17, 25, 26]. It measures global gene expression by reverse
transcription of mRNA into cDNA, and downstream sequencing libraries are made
of hundreds to thousands of individual cells (Fig. 9.2). Gene expression is mea-
sured directly by counting the number of reads or the unique molecular index
(UMI) that originate from each gene in a single cell. RNA seq of single cells
achieves greater sequencing resolution than cell populations at the cost of less
coverage [14]. The challenge with single-cell transcriptomics, as with most of the
sequencing methods, is the “noise” generated from such experiments [27, 28, 12].
For example, biological variation is derived from genetic, epigenetic, environ-
mental, and cellular factors. Technical noise can be introduced in the course of
processing from sample handling, cell isolation, reverse transcription, cDNA
amplification, sequencing, and analysis.

New techniques and methods are continuously been developed and reformed to
limit the aforementioned challenges [29]. A crucial step of single-cell RNA seq is
the unbiased amplification of cDNA before sequencing [27, 30, 28]. The use of
unique molecular identifiers (UMIs), which bar codes each molecule, allows a
robust quantification by intercepting amplification. Cell throughput is high, and the
use of unique molecular identifiers to barcode individual transcripts also helps
distinguish heterogeneous gene expression differences [19]. Microfluidics uses a
process of capturing cells within nanofluidic chambers and has considerably
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improved sensitivity for mutation detection by minimizing allelic dropouts [19, 12].
Drawbacks include reduced sensitivity such that only the 10–20% of the most
abundant transcripts can be quantitated. In addition, reliable amplification and
deletion of transcripts expressed at less than 10 copies per cell is a challenge and
can lead to inaccurate quantification of low abundancy transcripts [27, 28, 2].
Doublets, or cells that share the same UMI and bar codes, can also occur during
sample processing; therefore, it is important to validate true single-cell capture
before subsequent analysis.

9.2.4 Single-Cell Epigenetic Analysis

Whereas transcriptomics can be described as tracking “output” signals of a given
genetic locus, such as a protein encoding gene, the analysis of chromatin, and
epigenetic changes may be thought of as tracking the “input” signals of the locus in
question (Wills 2015). With advances in technology, it is now easier to probe
epigenetic phenomenon at the single-cell level including single-cell analysis of
DNA accessibility, methylation status, histone modifications, and chromosome
conformation by bisulfite sequencing, DNAase I hypersensitivity sequencing,
ATAC-seq, and single-cell Hi-C, with the latter methods being the most developed
for single-cell sequencing approaches [21, 31, 32, 33, 34, 35]. Challenges associ-
ated with these techniques are very similar to those of single-cell DNA sequencing.

Whole genome bisulfite sequencing assays identify DNA methylation (CpG
islands). Chromatin immunoprecipitation sequencing (ChIP-seq) has yet to be
adapted for single-cell sequencing; however, a method termed single-cell Hi-C
analyzes active chromatin domains in cell nuclei [35]. This method measures
proximity between sites in the genome in three dimensions, producing a “contact
map” that can be used to identify looping interactions between regulatory elements

Tumor  
Harves ng

Dissocia on, Library 
Preps scRNA-Seq

Surgical resec on from pa ents or 
model organisms.
Prompt transporta on to research 
lab.
Fresh ssue preserved in ice cold 
culture media.
Preserve tumor chunks in:...

LN2 for nuclear preps;
Formalin fixed for IHC;
Prepare protein lysates.

Mechanical & Enzyma c 
breakdown of tumors (~1hr).
Cell Counts, Viability Determina on 
QC of single cell preps.
Load 10X Genomics reagents and 
freshly prepared cell suspension 
(target cell count ~3-4K)
Library Prepara on (1-2 days) 

Sequencing of scRNA-Seq libraries 
on Illumina Pla orms HiSeq, 
NextSeq etc (~16-20 hrs) 
Data Analysis for Cell Type 
Deconvolu on (~1-2 days)
Pathway Analysis on Cell clusters
Target Elucida on

Fig. 9.2 Workflow of the single-cell RNA sequencing process. Starting from harvesting tumors
from patients or model organisms, fresh tissues are rapidly broken down into single cells, which
are the input material for the 10� Genomics pipeline to generate sequencing libraries from single
cells. Finally, the libraries are sequenced and data is analyzed to elucidate the cellular
heterogeneity and biology of individual tumors
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and gene loci [33, 35, 15]. Single cell assays for transposase-accessible chromatin
with sequencing (ATAC-seq) is another method used to identify open chromatin
regions which, in cancer cells, are often associated with oncogene expression and
represent sites with increased vulnerability to mutagenic assault [20].

9.2.5 Other Single-Cell Analysis Techniques

One weakness of current single-cell techniques is that it requires analysis of single
cells in suspension, which does not capture information pertaining to cell-to-cell
interactions [2, 12]. Moreover, tumor clones evolve dynamically in space and time,
and single-cell samples from an individual tumor may reveal mutations that are
clonally dominant but may not be apparent in other regions of the tumor [2]. This
has been partially overcome by spatiotemporal dynamics (discussed further below)
which can be obtained by serial sampling of the same patient and provides infor-
mation about evolution of a tumor through time (this is easier for liquid vs. solid
tumors), multiple anatomically distinct biopsies for intratumor heterogeneity, in situ
sequencing and imaging techniques for spatial resolution, or laser capture
microdissection, which aids with information lost with cell-to-cell interactions [12].

Finally, new methods that integrate different single-cell genomic approaches and
functional assays have recently been developed and include simultaneously mea-
suring two or more modalities, whether it be genome and transcriptome, tran-
scriptome and methylome, or RNA and protein [36, 17]. The ultimate goal of
linking phenotypes of cells and their genotypes includes validation of gene
expression and further development of precision medicine [36]. There are many
different approaches available, some of which include gDNA-mRNA sequencing
(DR-seq), genome and transcriptome sequencing (G&T-seq), single-cell DNA
methylation analysis through bisulfite sequencing (scBS-seq) and reduced repre-
sentation bisulfite sequencing (scRRBS-seq), as well as single-cell methylome and
transcriptome sequencing (scTrio-seq) [37]. When extracting multiple “omic”
datasets from individual cells, there are similar quality compromises as discussed
previously [12].

9.3 Data Analysis

Single-cell measurements preserve crucial information that is lost in bulk assays.
Statistical and computational methods are critical to extract meaningful information
from the data [36]. Single-cell analysis is based on the analysis of a cell modality
(genetic variations, cell expression profile, changes in chromatin conformation,
etc.), compared with some critical threshold. This threshold depends on the vari-
ability that exists in the assay as well as biological variability [15]. Statistical
models can account for this variability.
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Whole genome and whole transcriptome amplification as well as sequencing
data are more difficult to analyze at the single-cell level than in bulk experiments
[38, 39, 40, 1]. Bulk experiments have dozens of samples, and genome measure-
ments cannot distinguish between fluctuations due to changes in gene regulation
versus shifts in the ratio of different cell types. For single-cell genome amplification
experiments, DNA is extracted from millions of cells, with intermixed sequences
from different tumor clones, as well as normal cells [17]. Single-cell expression
measurements can be variable; therefore, separating technical variability from
biological variability is essential. Computational methods can help determine
which mutations are clonal (present in all tumor cells) and which are subclonal.
Point mutations and copy number data can be further analyzed with bioinformatics
algorithms, and phylogenetic trees of different tumor subclones can be inferred.
Analyzing expression levels in properly grouped subpopulations of cells allows a
more accurate measurement of expression among different cell subpopulations
[41, 15].

One of the major tasks of single-cell RNA seq data analysis is the resolution of
cellular heterogeneity (Fig. 9.3). Most pathological samples such as tumor tissues
consist of multiple cell types. Tumor tissues usually contain primary tumor cells,
stromal cells, endothelial cells, and immune cells recruited from the peripheral
blood and lymphatic organs. They are derived from different cellular lineages and
play different roles in the tumor initiation, progression, and metastasis, which
makes a tumor sample very complex and difficult to investigate. Before looking
deeper into the tumor clonal variation, the tumor and its microenvironment should
be resolved first. By identifying signature genes expressed in each cell type, one can
further delineate the states of different cell types.

Fig. 9.3 Single-cell RNA sequencing data analysis. a A representative example of a
three-dimensional tSNE rendering of scRNA seq data for a mouse pancreatic tumor is shown.
Each dot depicts a single cell, and colored clusters represent distinct cell types identified in the
tumor. b Quantification of each individual cell type is shown with five different most commonly
observed cell types identified in this tumor. CAF: cancer-associated fibroblasts; EMT: tumor cells
undergoing epithelial to mesenchymal transition; ENDO: endothelial cells; ETC: epithelial tumor
cells; TAM: tumor-associated macrophages
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Understanding the cellular composition and tumor evolution can facilitate the
evaluation of the tumor state and aid treatment decisions. Given the assumption that
biological variability is larger than the technical variability, it is generally believed
that similar cell types will cluster together by the cell type-specific feature
expressions. The dynamic change of a specific cell type from one state to another
sometimes could also be captured by such metric, though it is very challenging.

The calculation of the similarity between cells is usually based on multiple gene
expression features. The relative position of these cells in a high-dimensional space
is not easy to comprehend. Principal components analysis (PCA) is one of the most
commonly used algorithms for reducing the dimensionality of data. Nonetheless,
for single-cell RNA seq data, the first two to three components of PCA analysis
cover a very small proportion of variance and therefore make the clustering effect
less representative than for those other gene expression datasets [42]. A more
advanced, nonlinear dimensionality reduction algorithm called t-Distributed
Stochastic Neighbor Embedding, or t-SNE [42], has been proposed to explore
high-dimensional single-cell RNA seq data. t-SNE itself does not necessarily define
the similarity metric between cells but makes it visualizable in low-dimensional
space. This algorithm is being widely used in part because it can be adapted to
many visualization tools that are easily understood and interpreted by
non-computational biologists (Fig. 9.3). The relationships across cell types can be
inferred by the high-dimensional calculation and explored by the low-dimensional
visualization.

The single-cell clustering and trajectory method of analysis can be used to define
cell types and stable cell states. For example, clustering of three different cell types
from one tumor by gene expression can group single cells into those of invasive
tumor cells, noninvasive tumor cells, and stromal cells. When clustering, or
grouping cells by gene expression, each cell represents a point in space based on
expression of genes (approximately 30,000 genes). Clustering is based on the
measured distances between points, and cells are grouped based on mutual
proximity.

Besides resolving the cellular composition of heterogeneous tissues, single-cell
studies also aim to characterize genes in such a way so that presumptions can be
made of where a cell is in time and what drives a cell to transition from one state to
another [15]. Using current methods, cells are analyzed at a particular state and
time. The intact sample is destroyed by, for example, cell lysis (in the case of RNA
seq and qRT-PCR) or cell fixation (in the case of FISH). Time series experiments
extrapolate cell transition states through time; however, they misconstrue results by
averaging cell expression as they proceed through a biological process in unsyn-
chronized manner [43, 15]. Any particular sample at a given time-point contains
cells of varying stages of cell growth and transition, reflecting the underlying
dynamics of transitional state relevant genes. Single-cell analysis can define genes
that are differentially expressed during these transitional states. In order to recover
true signal of relevant expression, cells are re-ordered in something called “pseu-
dotime” according to biological progress (for example, percent cells differentiated
instead of time). Two algorithms are currently available based on pseudotime,

9 Single-Cell Sequencing in Precision Medicine 247



Wanderlust and Monocele, both of which attempt to define those genes responsible
for cell transition [43, 15].

9.4 Application of Single-Cell Analysis in Precision Cancer
Therapy

The translational application of single-cell sequencing in precision cancer therapy
has the potential to improve cancer diagnostics, prognostics, targeted therapy, early
detection, and noninvasive monitoring [2]. It is now technically and economically
feasible to sequence single-cell DNA and RNA. Single-cell sequencing allows
highly sensitive detection of rare mutations and cell-specific gene expression pro-
files. This method can identify rare tumor tissue variants that have the potential to
drive drug resistance or serve as biomarkers of therapeutic success and ultimately
advancing cancer genomics [14].

The importance of single-cell techniques in the clinical setting can be illustrated
in tumor sampling. A single sample from a tumor does not represent the tumor as a
whole. Spatially separate samples from a single tumor (or elsewhere in the body
from metastasis) is composed of varying proportions of cell types and/or diverse
underlying genetic and epigenetic makeup, otherwise known as tumor hetero-
geneity. Greater tumor heterogeneity may predict poorer response to therapy, higher
probability of metastasis, or poor overall survival [2]. Identification of founder
mutations, constructed from tumor phylogenetic trees, may aid in prediction of
response to treatment.

Sequencing at the single-cell level can detect low abundance mutations, facili-
tating the identification of drivers of drug resistance. Drug resistance dynamics have
been previously modeled in metastatic breast cancer cell line using RNA seq
technology [14]. When metastatic breast cancer cells were treated with paclitaxel,
stressed cells arrest and die, whereas those rare drug-tolerant cells resume prolif-
eration and their clones expand. The ability to profile both the genome and tran-
scriptome of the same cells has potential to elucidate heterogeneity at the genome,
epigenome, transcriptome level.

Drug development is a lengthy and expensive endeavor with a high failure rate
[10]. Drug development includes many steps: identification of drug targets, can-
didates, assessing drug resistance, drug toxicity, and pharmacokinetics. Many drugs
emerge from preclinical studies only to fail in clinical trials. NGS has identified new
target candidates for drug development. Single-cell sequencing in drug develop-
ment expands on bulk genomic data by offering a more thorough and compre-
hensive picture on the underlying genetics, epigenetics, and transcriptomics of
responders versus non-responders at an individual cell level. This ultimately allows
for improved efficiency, accuracy, and identification. Applications of single-cell
sequencing in drug development include identification of drug candidates and drug
targets, drug resistance, and drug responses and toxicities [10].
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Single-cell sequencing has shown potential to advance early detection and
noninvasive monitoring. This concept is being elucidated by studies on circulating
tumor cells (CTC), ultimately providing insight on metastatic dissemination (Navin
2015). CTC studies also aid in understanding evolution of the genome in early
stages of cancer by identifying clones (and their underlying genetics, transcrip-
tomics, etc.) that invade surrounding tissue.

Algorithms like Wanderlust and Monocle allows one to reconstruct transcrip-
tional dynamics of development, differentiation, and/or clonal evolution from
single-cell transcriptome data. Given such insight, we look forward to single-cell
sequencing’s ability to identify signature transcriptions of tumor states, which will
strongly facilitate treatment decisions and healthcare strategies for patients.

9.5 Perspectives

Single-cell sequencing will transform cancer research over the coming years as
even initial experiments have revolutionized our current understanding of gene
regulation and disease. Indeed, the data available with single-cell techniques has
never been possible before. Since the initial single-cell sequencing experiments,
there have been many technical and experimental advances and the field continues
to advance at a remarkable speed.

Drawbacks to single-cell sequencing include loss of tumor characteristics
including spatial information, intratumor heterogeneity, and important cell-to-cell
interactions. This issue stems from the fact that single-cell preparation and isolation
capture techniques require intact single cells to be dissociated from fresh tissues.
Most single cells are derived from a biopsy or small piece of tissue; therefore,
single-cell sequencing may not accurately represent the underlying
genome/transcriptome of the original tumor. Even the process of dissociating single
cells from tissues may alter the cells and their underlying gene expression. In
addition, microfluidic devices lose entire cell populations and may have bias for
certain cells sizes, which, along with inherent weaknesses of selective amplification,
can skew results.

With increasing amounts of complex data generated by single-cell sequencing
techniques, there exists the dilemma of accurate interpretation and what to do with
the sheer quantity of data generated. While many tools for analysis have been
developed, there is a need for further analytic improvement in filtering noise and
scalability [43]. Some of the above issues, particularly spatial information, can be
overcome by single-cell analysis techniques, but this highlights the need for skilled
bioinformaticians to accurately analyze the data. In addition, there is currently no
universal analysis technique available, allowing for potentially more bias. Another
challenge that limits the wide application of whole genome single-cell sequencing
in the research and clinical settings is its relatively high cost compared to other bulk
sequencing techniques. For example, a single-cell RNA seq experiment using the
Chromium System from 10� Genomics currently costs at least 10 times higher than
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a typical bulk whole genome RNA seq experiment. However, new and cheaper
techniques are being developed which will greatly improve the accessibility of the
technology so as time goes on.

Emerging new technologies that combine single-cell sequencing with other
techniques acquire even deeper and richer genomic/biological information of cells
and tissues. Spatial transcriptomics, which integrates single-cell RNA seq with the
in situ hybridization (ISH), is one of such new technologies. It analyzes intact tissue
sections on slides and does not require the need for cell isolation from tissue. The
process involves the placement of histological sections on slides that contain
reverse transcription primers with unique positional bar codes and subsequent
placement of millions of oligonucleotides in micrometer subsections. This is fol-
lowed by reverse transcription [23]. This method has the potential to overcome the
loss of spatial information, intratumor heterogeneity, and the potential alteration of
cells during the process of dissociation. Application of such technologies in clinical
samples could potentially revolutionize patient care.
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10.1 The Gut Microbiota

Precision oncology considers the molecular characteristics of a patient’s tumor to
determine an ideal approved or investigational therapy that could provide clinical
benefit [1]. While prospective profiling of patient’s tumors has resulted in improved
selection and response to therapies [2–4], this “tumorcentric” approach can fail to
account for impact of the complex microenvironment that influences tumor growth
and response to therapy. The gut microbiota is a complex ecosystem of microor-
ganisms where the total number of bacteria in the average 70 kg person is estimated
to be 3.8 � 1013 [5]. The number of bacteria in the body is of the same order of
magnitude as the number of human cells and has a total mass of about 0.2 kg [6].
These microbes play fundamental roles in health and survival and have been found
to play a significant role in the response to cancer therapy and susceptibility to toxic
side effects of those drugs.

10.2 Gut Microbiota Generate Short-Chain Fatty Acids
(SCFA)

The gut microbiota produces SCFA mainly through the fermentation of carbohy-
drates that escape digestion and absorption in the small intestine [7]. The major
SCFA products produced are formate, acetate, propionate, and butyrate and these
products are detectable in the circulation [7]. SCFAs are reported to directly activate
G-coupled receptors, inhibit histone deacetylases (HDACs), serve as energy sub-
strates, and promote T-cell differentiation into both effector and regulatory T cells to
promote either immunity or immune tolerance [8–10]. The SCFA’s butyrate and
propionate directly modulate the gene expression of CD8+ cytotoxic T lympho-
cytes and Tc17 cells [11]. The SCFAs appear not only optimize the function of
Tregs and CD4+ T cells, but also modulate the function of CD8+ T cells to
enhance anti-tumor and anti-viral activity [11, 12].

10.3 SCFAs as Regulators of Histone Post-translational
Modifications (HPTM)

Human gut microbes regulate gene transcription using a variety of epigenetic marks
(see Table 10.1, adapted from [13]). At least eleven types of HPTMs have been
reported on over 60 different amino acid residues on histones, including methyla-
tion, acetylation, propionylation, butyrylation, formylation, phosphorylation,
ubiquitylation, sumoylation, citrullination, proline isomerization, and ADP ribo-
sylation [14], and the gut microbiota-generated SCFAs are involved in many of
these modifications. While most consider lysine acetylation to be a predominant
epigenetic event, a new histone modification, lysine crotonylation (Kcr) was found
to be surprisingly abundant in the small intestine crypt and colon [15].
Crotonyl-CoA, the precursor of Kcr, is generated by Acidaminococcus fermentans
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[16], and depletion of gut microbiota leads to decreased histone crotonylation in the
colon [15]. Class I HDAC enzymes, HDAC1, HDAC2, and HDAC3, are reported
to efficiently remove the crotonyl moiety; microbiota-derived SCFAs are class I
selective HDAC inhibitors and are therefore also histone decrotonylation inhibitors
[15, 17]. The impact of Kcr on protein function remains to be fully elucidated;
however, a variety of cancer proteins are crotonylated [18]. The gut microbiota is
therefore responsible for histone post-translational modifications and alterations to
the gut microbiota composition will have significant effects on transcriptional
regulation and sensitivity and/or resistance to cancer therapeutics.

10.4 SCFAs and Response to Cancer Chemotherapy

10.4.1 Drug Metabolism

More than 40 drugs are reported to be directly metabolized by the gut microbiota
including the anticancer drugs methotrexate and irinotecan [19]. The gut microbiota
also directly or indirectly increases the metabolism of orally and systemically
delivered drugs through SCFA modulation of cytochrome P450 (Cyp450) gene
family members [20–22]. Germ-free mice demonstrate faster metabolism of many
drugs suggesting the microbiota and SCFAs exert regulatory control over the rate of
drug metabolism and detoxification [20]. The heterogeneity of clinical response to
drug therapy and/or variable emergence of toxicities may be due in part to differ-
ences in gut microbiota composition and differential drug metabolism [23].

10.4.2 Response to Cancer Chemotherapy

Depletion of mouse microbiota with antibiotics results in dysbiosis that causes a
drop in luminal and serum SCFAs, and increased expression of HDAC2 that has

Table 10.1 HDACs used by human gut microbes to regulate gene transcription

HDAC Acetyl-lysine Propionyl-lysine Butyryl-lysine Crotonyl-lysine

Class I HDAC1, HDAC2,
HDAC3, HDAC8

NA NA HDAC1,
HDAC2,
HDAC3

Class IIa HDAC4, HDAC5,
HDAC7, HDAC9

NA NA NA

Class IIb HDAC6, HDAC10 NA NA NA

Class III SIRT1, SIRT2, SIRT3,
SIRT4, SIRT6, SIRT7

SIRT1, SIRT2, SIRT3 SIRT1, SIRT2,
SIRT3

SIRT1, SIRT2,
SIRT3

Class IV HDAC11 NA NA NA

NA, not available
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been linked to colon tumorigenesis [15, 24, 25]. Elevated HDAC2 reduces the
sensitivity of non-small cell lung cancer (NSCLC) cells to cisplatin [26], melanoma
cells to the alkylating drugs temozolomide, dacarbazine, and fotemustine [27],
colorectal cancer cells to doxorubicin [28] and glioblastoma multiforme cells to
temozolomide [29]. In breast cancer, HDAC2 overexpression is correlated with
metastasis, increased Ki67, and increased multidrug resistance protein expression.
HDAC2-positive breast cancer is also associated with shorter survival in patients
who received chemotherapy containing anthracyclines [30]. The microbiota exerts
suppressive activity on HDAC2 activity via SCFA production, suggesting the
potential value of class I selective HDAC inhibitors in patients with compromised
gut microbiota. Isoform-selective HDAC inhibitors could serve as SCFA-
replacement therapies to support local and systemic gene regulation by acting as
lysine deacetylation and decrotonylation inhibitors. The SCFA-replacement thera-
putics could also potentially improve clinical response to a variety of chemother-
apeutic agents through the inhibition of elevated HDAC2 activity found in many
cancers.

Cyclophosphamide therapeutic efficacy is due in part to the stimulation of an
anti-tumor immune response. Cyclophosphamide alters the microbiota in the small
intestine and causes the translocation of select Gram-positive bacteria to secondary
lymphoid organs [31]. There, these bacteria stimulate the generation of pathogenic
T helper 17 (pTh17) cells and memory Th1 immune responses [31]. Germ-free
mice or mice treated with antibiotics showed a reduction in pTh17 cells, and tumors
became resistant to cyclophosphamide [31] confirming the role of the microbiota in
the anticancer mechanism for cyclophosphamide. Also, antibiotic treatment sup-
pressed the response of subcutaneous tumors to a CpG-oligonucleotide
immunotherapy and platinum chemotherapy [32]. The antibiotic treated or
germ-free mice had tumor-infiltrating myeloid-derived cells that produced lower
levels of cytokines after CpG-oligonucleotide treatment and produced lower
amounts of reactive oxygen species (ROS) following oxaliplatin or cisplatin therapy
[32]. These data demonstrate that the microbiota contributes to the modification of
genotoxicity for platinum compounds independent of immunogenic cell death.
Anthracyclines, alkylating agents, and camptothecins also induce ROS as part of
their anticancer activity, so it is likely that the gut microbiota may influence the
effectiveness of these drugs as well [32]. The role of the microbiota in modulating
the response to radiation therapy needs to be characterized, but tumors in germ-free
mice are less responsive to the beneficial effects of radiation when compared to
normal mice with an intact microbiota; evidence in humans and experimental
animals suggests that the composition of the intestinal microbiota may affect the
severity of radiation-induced mucosal toxicity.

The gut microbiota also has a role in the response to tyrosine kinase inhibitors
[33]. Patients with metastatic renal-cell carcinoma were treated with first-line
VEGF-tyrosine kinase inhibitors and were also receiving antibiotics with either
Bacteroides coverage or not. When compared to patients not receiving antibiotics, a
significant improvement in PFS was observed in patients taking antibiotics that
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covered Bacteroides spp [33]. These data confirm a role for the gut microbiota in
the clinical response to tyrosine kinase inhibitors.

10.5 The Gut Microbiota and the Immune System

Gut bacterial SCFAs have profound effects on the adaptive immune system, with
high expression of SCFA receptors being reported on immune cells [10]. The
generation of effector and regulatory T cells is influenced by the gut microbiota and
is dependent on the variety of cytokines found in the microenvironment [34].
SCFAs enhance T-cell differentiation into effector T cells, such as Th1 and Th17
cells, and also anti-inflammatory IL-10þ regulatory T cells [34]. Recently, it was
shown that Prevotella heparinolytica promotes the differentiation of Th17 cells
colonizing the gut that migrates to the bone marrow in a transgenic mouse model of
multiple myeloma [35]. In this experimental model, the commensal bacteria
increase IL-17 signaling that accelerates progression of smoldering myeloma to
myeloma [35].

10.6 Immunotherapy and the Microbiota

Approaches that modulate the patient immune system have demonstrated signifi-
cant clinical activity in hematological and solid cancers. One of the first reports on
the contribution of the gut microbiota on immune therapy was the reported
diminished tumor response in mice receiving antibiotics, total body irradiation, and
tumor-specific cytotoxic T cells [36]. In this study, the authors report that total body
irradiation caused the translocation of the gut microbiota to mesenteric lymph
nodes, and increased proliferation of the injected T cells in the tumor [36]. Simi-
larly, when mice were treated with an intratumoral TLR9 agonist CpG-
oligodeoxynucleotide, anticancer activity was observed; however, the anti-tumor
effect in germ-free mice or mice treated with antibiotics was diminished demon-
strating that an intact microbiota was required for optimal anticancer effects [32].

The role of the gut microbiota on clinical activity or resistance of immune
checkpoint modulators has been reported [37–42]. In addition to the gut microbiota,
there have been reports on the contribution of an intratumoral microbiome that
could play a role in chemotherapy and immunotherapy resistance [43–46].

Anti-tumor immunity in patients can be reactivated by the immune checkpoint
inhibitors (antibodies against cytotoxic T lymphocyte-associated antigen 4 CTLA4)
and programmed cell death protein 1 (PD1) or its ligand PD1 ligand 1 (PDL1) [47].
Antibodies targeting these immune checkpoints have demonstrated significant
clinical activity in patients with a variety of cancers; however, variability and
duration of patient response remain an area of active investigation [48]. The gut
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microbiota regulates the anticancer activity of anti-CTLA4 and anti-PDL1 cancer
therapies [41, 42]. Oral supplementation of either B. thetaiotaomicron or B. fragilis
in microbiota-depleted mice restores the anti-tumor response to anti-CTLA4 anti-
bodies [42]. Vancomycin enhances the efficacy of CTLA4 blockade in mice by
decreasing the abundance of Gram-positive bacteria while preserving Gram-
negative Bacteroidales and Burkholderiales [42]. Analysis of the fecal microbiota
from patients with melanoma before and after treatment with anti CTLA4 showed a
change in the relative proportions of three dominant enterotypes; enterotype A was
dominated by Prevotella, enterotypes B and C were dominated by different Bac-
teroides [41, 42]. When fecal microbiota from patients with each of the three human
enterotypes was transferred into tumor-bearing, germ-free mice only the enterotype
C resulted in enhanced response to anti CTLA4 [42].

The response to anti-PDL1 was also found to be significantly associated with the
gut microbiota of the Bifidobacterium genus, including Bifidobacterium breve,
Bifidobacterium longum, and Bifidobacterium adolescentis [41]. Oral administra-
tion of a probiotic cocktail of Bifidobacterium including B. breve and B. longum,
alone or with anti-PDL1, enhanced CD8 + T-cell-induced anti-tumor activity [41].
The effect of Bifidobacterium was abolished in CD8+ T-cell-depleted mice, indi-
cating that Bifidobacterium action is dependent on cytotoxic T-cell activity [41].
The therapeutic effectiveness of anti-PDL1 treatment can be seen when Bifi-
dobacterium are in higher numbers in the gut microbiota.

The anti-tumor activity of anti-PD-1 alone or when combined with anti-CTLA4
was significantly decreased when mice were treated with a broad-spectrum antibiotic
combination (ampicillin + colistin + streptomycin) [38]. This experimental data were
then confirmed and extended to patients with advanced NSCLC, RCC, or urothelial
carcinoma (n = 42) who received PD-1/PD-L1 monoclonal antibodies. Broad-
spectrum antibiotic treatment in these patients resulted in resistance to PD-1 blockade
[38]. Metagenomic analysis of patient stool samples revealed correlations between
clinical response to checkpoint inhibitors and the relative abundance of Akkermansia
muciniphila, and in preclinical studies supplementation with A. muciniphila restored
the efficacy of PD-1 blockade [38]. Other studies have reported bacterial species
B. longum, Collinsella aerofaciens, and Enterococcus faecium [40] and relative
abundance of the Ruminococcaceae family [49] in PD-1 blockade responding
patients. Patients with a high abundance of Clostridiales, Ruminococcaceae, or
Faecalibacterium in the gut had higher frequencies of effector CD4+ and CD8+ T
cells in the systemic circulation and a preserved cytokine response to anti–PD-1
therapy, whereas patients with a higher abundance of Bacteroidales in the gut
microbiome had higher frequencies of Tregs and myeloid-derived suppressor cells
(MDSCs) in the systemic circulation, with a blunted cytokine response [49]. These
findings highlight the therapeutic potential of modulating the gut microbiome in
patients receiving checkpoint blockade immunotherapy, and warrant monitoring the
gut microbiota in cancer clinical trials [49].
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10.7 The Intratumoral Microbiome

The microbiota has also emerged as a contributor to cancer development in
intestinal tract malignancies, including laryngeal, esophageal, gastric, and colorectal
cancers, as well as in primary liver cancer [50]. A recent report described that
pancreatic cancers harbor a distinct intrapancreatic microbiome that is responsible
for immune suppression and failure of immune checkpoint-targeted therapeutics
[51]. When the intrapancreatic microbiome was ablated in experimental animals,
immunogenic reprogramming of the tumor microenvironment occurred, including a
reduction in MDSCs and an increase in M1 macrophage differentiation, promoting
TH1 differentiation of CD4+ T cells and CD8+ T-cell activation [51]. There was an
abundance of B. pseudolongum in gut and tumor microbiota in pancreas cancer that
was associated with enhanced oncogenesis that could be reversed by ablating the
microbiome [51]. The intrapancreatic microbiome has also been shown to inactivate
the chemotherapeutic drug gemcitabine by Gammaproteobacteria-generated cyti-
dine deaminase [46]. Upon examination, 113 human pancreas cancers, 86 (76%)
were positive for bacteria, primarily Gammaproteobacteria, suggesting the intra-
pancreatic microbiome can also negatively diminish chemotherapeutic activity [46].

Recent pathological analyses have revealed a distinct microbiota that is present
in breast cancer tissue that differs from normal breast tissue with a relative
decreased in the genus Methylobacterium [52]. These authors also report signifi-
cantly different microbiomes compared to non-cancer patients in the urinary tract
characterized by increased numbers of Gram-positive bacteria [52]. The exact role
of intratumoral bacteria in carcinogenesis and response to treatment in breast and
urinary tract cancers is an area of active investigation.

The liver is exposed to the gut microbiota through the portal vein and recently
the role of gut bacteria in anti-tumor surveillance in the liver was reported [53]. The
microbiota metabolizes bile acids that recirculate back into the liver through the
enterohepatic circulation [52, 53]. Antibiotic treatment of mice with vancomycin
removed Gram-positive bacteria responsible for primary to-secondary bile acid
metabolism causing the expression of CXCL16 and selective increase in hepatic
CXCR6 positive natural killer T (NKT) cells [53]. This chemokine-dependent
accumulation of hepatic NKT cells provides anti-tumor immunity in the liver,
against primary and metastatic liver disease [53]. The gut microbiota increases liver
anti-tumor immunosurveillance through bile acid metabolism and recruitment of
immune effector cells.

In colorectal cancer, the gut microbiota translocate across compromised
epithelial layers and stimulate immune cell infiltration and proinflammatory cyto-
kine production [54]. Tumor infiltrating lymphocytes (TILs) are reported to
improve survival for patients with colorectal cancer [55]. Human colorectal cancer
cells from both primary tumors and established cell lines express toll-like receptors
and produce significant chemokine expression when exposed to various bacterial
species [55]. Antibiotic treatment of mice bearing orthotopic colorectal cancer
xenografts demonstrated significantly lower levels of tumor-derived chemokines
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supporting the important role of the gut microbiota in tumor cell chemokine
expression [55]. The extent of T-cell infiltration in primary human colorectal
cancers is associated with the presence of specific bacterial families; these specific
bacterial families were also associated with induction of specific immune cell
attracting chemokines, suggesting the gut microbiota is directly involved in tumor
cell immune cell recruitment and potentially colorectal cancer survival [55]. Some
bacterial families like Fusobacteria were reported to be associated with worse
clinical outcome and were found at higher levels in poorly immune cell infiltrated
cancers [56]. Other bacterial families, like F. nucleatum, have been shown to inhibit
natural killer and T-cell functions [57]. Taken together, these data demonstrate that
the specific composition of the gut and tumor microbiota could play a key role in
the attraction and/or suppression of immune effector cells in the tumor microen-
vironment, impacting patient outcomes.

10.8 Summary

It is unclear which bacterial families are required for an improved clinical response
to cancer therapies, but there is no question that the variability in gut microbiota
found in patients results in heterogeneous response to therapeutic interventions.
Cancer patients are taking a variety of prescription and over-the-counter con-
comitant medications, all of which can alter the composition of the gut microbiota.
For example, the COX-2 inhibitor celecoxib alters select bacterial populations in
experimental animals including decreased Lactobacillaceae and Bifidobacteriaceae
and increased Coriobacteriaceae [58]. Proton-pump inhibitors have been reported to
significantly increase Lactobacillus spp., L. gasseri, L. fermentum, L. reuteri, and L.
ruminis as well Streptococcus species [59]. Even nutraceuticals influence the gut
microbiota composition, and many patients are taking a large variety of
over-the-counter vitamins to supplement their prescription medications. For
example, curcumin alters the gut microbiota resulting in increases in most
Clostridium spp., Bacteroides spp., Citrobacter spp., Cronobacter spp., Enter-
obacter spp., Enterococcus spp., Klebsiella spp., Parabacteroides spp., and
Pseudomonas spp. and reduced relative abundance of several Blautia spp. and most
Ruminococcus spp. strains [60]. As a result, a new branch of pharmacogenomics,
called pharmacomicrobiomics, has emerged to study drug–microbiome interactions
[61]. One interesting question is the potential role of the regulatory authorities in
requiring an assessment of new medicines effects on the microbiota during required
GLP safety studies. Knowledge of the potential microbiota changes by these new
medicines could have utility in identifying whether new drugs could negatively or
positively impact the clinical activity of approved cancer medicines.

Studies to restore and/or enhance the gut microbiome by dietary modification,
probiotics, prebiotics, post-biotics, autologous fecal microbiota transplant, and
antibiotics could have therapeutic benefit for cancer patients to improve efficacy and
reduce the toxicity of chemotherapy [62–65]. Dietary factors play a key role in the
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number and kind of bacterial taxa, and the production of a variety of epigenetic
factors that regulate gene expression [66, 67], so close monitoring of the diets and
supplements that cancer patients consume may be required to better understand and
control for treatment outcomes.

To date, the majority of analyses of the gut and tumor microbiota have been
through next-generation sequencing. However, gene/transcript presence does not
necessarily indicate protein expression; therefore, directly measuring expressed
proteins by metaproteomics will provide precise functional information on the
microbiota [68, 69]. A thorough examination of the gut and intratumoral microbiota
in cancer patients should include metaproteomic analysis which can reveal both
human and microbial functional changes indicative of the host–microbiome inter-
actions [70, 71].

Because cancer patients are already closely monitored when participating in
clinical trials it will be important to add comprehensive microbiome assessments,
including metaproteomic assessments to treatment protocols to fully understand
baseline microbiota in cancer patients and to study the impact of therapies on
specific bacterial families and their contribution to therapeutic outcomes.
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11.1 Introduction: Emerging Themes in Biomedical
Science

Modern biomedical science is guided, if not dominated, by many interrelated
themes. Four of the most prominent and important of these themes are (see
Fig. 11.1): 1. personalized medicine, or the belief that health interventions need to
be tailored to the nuanced and often unique genetic, biochemical, physiological,
exposure, and behavioral features individuals possess; 2. the exploitation of
emerging data-intensive assays, such as DNA sequencing, proteomics, imaging
protocols, and wireless health monitoring devices; 3. ‘big data’ research paradigms
in which massive amounts of data, say of the type generated from emerging
data-intensive biomedical assays, are aggregated from different sources, harmo-
nized, and made available for analysis in order to identify patterns that would
normally not be identified if the different data points were analyzed independently;
and 4. artificial intelligence (AI; which we consider here to include machine
learning, deep learning, neural network constructs, and a wide variety of related
techniques [1]), which can be used to find relevant patterns in massive data sets.

These four themes are highly interrelated in that, e.g., personalizing a medicine
or tailoring an intervention to a patient requires a very deep understanding of that
patient’s condition and circumstances, and this requires the extensive use of
sophisticated assays that generate massive amounts of data, such as DNA
sequencing or an imaging protocol. Essentially, the data produced by these assays
needs to be organized so that analyses can be pursued to identify features that the
patient possesses that may indicate the optimal intervention. In addition, research
associated with each of these themes is often pursued independently of the others
because of the very specialized expertise required. For example, there are scientific
journals devoted to personal medicine (e.g., ‘Personalized Medicine,’ ‘Journal of
Personalized Medicine’), emerging assays (e.g., ‘Nature Biotechnology,’ ‘Nature

Big Data and
IT Infrastructure

Artificial
Intelligence

Personalized
Medicine

Emerging
Technologies

T0: Preclinical
T1: Phase I

T2: Phase 2/3
T3: Implementation

T4: Evaluation

Fig. 11.1 Four emerging complementary themes in biomedical science: personalized medicine,
emerging data-intensive technologies, big data and information technologies (IT) infrastructure,
and artificial intelligence (AI). These technologies can be fuel, and be fueled by, AI in all phases of
the development (T0–T4) of personalized medicines (see Fig. 11.2)
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Digital Medicine’), big data (e.g., ‘Big Data,’ ‘Journal of Big Data,’ ‘Gigascience’),
and artificial intelligence (e.g., ‘IEEE Transactions on Neural Networks and
Learning Systems,’ ‘IEEE Transactions on Pattern Analysis and Machine Intelli-
gence’) that publish very focused studies. However, the integrated use of the
insights, information, and strategies obtained from research associated with each of
these themes is necessary for creating personalized health products, such as drugs
and prognostic tools.

Bringing together research activities associated with these four emerging themes
is not trivial, as it will require communication and participation from researchers
and practitioners with a wide variety of skills and expertise, including molecular
biology, genetics, pathology, informatics, computer science, statistics, clinical
science, and medicine. AI will have a special role to play in this integration process
if the goal is to advance personalized medicine, since it is unclear how relevant
clinically-meaningful insights can be drawn from big data-generating assays that
would complement or build off the insights from experts in different domains. In
this light, there are a number of phases in the development of medicines, general
interventions, and other products, such as diagnostics, prognostics, decision support
tools, etc., where AI could have a significant impact. These different phases are
emphasized in the various subsections of this chapter that describe and comment on
recent studies leveraging AI. This chapter does not provide an exhaustive literature
review of AI in medicine, however, as there are some excellent reviews for this [2–
4], but rather considers the potential that AI has in developing new medicines,
health devices, and products. In particular, a focus on the need for greater inte-
gration across the various phases of the development of health interventions and
products could result in very radical yet positive changes in the way medicine is
practiced. In this sense, this chapter is as much a summary of the ways in which AI
can be exploited in modern medicine as it is a vision of the future.

11.2 The Translational Workflow

As noted, the development of interventions and health products, as with the diag-
nosis and treatment of a patient, proceeds in different phases. There are various
ways of defining and referring to these phases; however, all of them point to
opportunities for AI to have a substantial impact if leveraged appropriately. For
example, in the context of clinical trials to vet a new drug or intervention for
treating a disease like cancer, a common progression or workflow runs from phase I
trials, which involve characterizing the pharmacokinetic properties of a drug using
what may turn out to be non-physiologic (i.e., does not have an appreciable effect
on the body) and physiologic (i.e., does have an appreciable effect on the body)
doses of a drug in a very small number of individuals, to phase I trials, which
involve establishing safe and effective doses of a drug in small number of indi-
viduals, to phase II trials, which seek to establish whether a drug is likely to be
efficacious in a moderately sized group of individuals, to phase III trials, which
attempt to establish the utility of a drug in the population at large by studying a very
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large number of individuals, to phase IV trials, which evaluate the adoption, uptake,
and acceptance, as well as any evidence for adverse consequences, associated with
the use of the drug in the population at large.

We take a broader view of the workflows behind developing new products than
that reflected in the traditional clinical trial progression. This broader view is
consistent with the scheme used by, for example, the National Institutes of Health
(NIH)’s Clinical and Translational Science Award (CTSA) program [5]. The CTSA
program focuses on all aspects of biomedical science associated with attempts to
translate very basic biomedical insights concerning, e.g., pathogenic processes
contributing to diseases, into clinically useful products like drugs or interventions
for those diseases. The CTSA scheme does, however, incorporate elements of the
phase 0–phase IV clinical trials workflow or transition scheme for developing drugs
or health products to treat or manage diseases in the population at large. Thus, in
accordance with the CTSA scheme (left panel of Fig. 11.2), T0 science involves
very basic research focusing on that could lead to the identification of a drug or
intervention target and then crafting an appropriate drug or intervention that
modulates that target; T1 science focuses on testing an intervention or health device
in a small clinical studies to determine if it is safe and at what dosages it should be
used; T2 science involves vetting the drug or device in a large number of indi-
viduals in a well-designed study to assess its efficacy in the population at large; T3
science focuses on the implementation of the drug or device for use in the popu-
lation, including adapting existing workflows (e.g., custody chains for tests or
physician–patient interaction points); and T4 science involves a re-evaluation or
assessment of the utility of the drug or device post deployment and implementation.
Each of these phases can leverage AI techniques if the right data and motivation is
present.

The actual practice of personalized medicine can be seen as involving an
analogous process to the development of drugs and health devices (right panel of
Fig. 11.2; see also Schork and Nazor [6]). Thus, P0 activity involves making a
diagnosis or determining an individual’s risk of developing a disease; P1 activity
involves identifying the key pathophysiologic processes, if not known, that are
causing (or likely to cause) a disease that might be amenable to modulation and
improvement by an appropriate intervention; P2 considers the identification of an
appropriate intervention given what was identified in the P0 and P1 stages; P3
involves testing the intervention on the relevant individual undergoing the diagnosis
and pathobiology assessment; and P4 involves warehousing the result in appro-
priate databases so that the insights and information obtained on a patient can be
exploited in assessments involving other patients or used in broader aggre-
gated data mining initiatives to find clinically meaningful patterns.

A couple of items about these workflows are worth noting. First, as noted,
although the science associated with each component involves unique insight and
expertise and provides a fertile ground for collaborations with AI tools and scientists
independently of the other components, the transmission of information from one
component to another—or the transitions from one component to another—is of
crucial importance (e.g., consider that a diagnostic would not be particularly useful if
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it did not help a physician choose an appropriate course of action). Second, a goal of
personalized medicine, and the improvement of health care generally, is to make
workflows like those in Fig. 11.2 more efficient and reliable, and AI can have a
substantial role to play in this broader goal. These two items are emphasized in
Sect. 11.8 below.

11.3 Preclinical (T0) and Diagnostic (P0) Research

The identification of targets for therapies (T0 research from the left-hand side of
Fig. 11.2) can be greatly aided by AI in quite a few contexts. For example, many
assays used to uncover potential therapeutic targets generate massive amounts of
data and as such often require sophisticated statistical methods to identify mean-
ingful patterns. AI has been used to identify such patterns from, e.g., DNA
sequence data and molecular pathology imaging protocols [7–10]. For individual

T0: Discovery/Pre-Clinical
Target Identification
Target Validation

Toxicity

T1: First-in-Human/Proof-of-Concept
Dose Ranging and Safety Studies

Patient Engagement
N-of-1

T2: Clinical Assessment
Population Studies and Trials

Outcomes Monitoring
Secondary Effect

T3: Clinical Implementation
Deployment Studies/Optimization

Adaptive Health Systems
Surveys

T4: Post-Deployment Evaluation
Acceptance and Experience
Refinement andAdaptation

Regulatory Issues

P0: Diagnosis
Genomic/Biochemical/Physical Exam

Environmental Assessment
Interactions

P1: Intervention Point Assessment
Molecular Physiologic Studies

Model Organism Studies
AvatarUse

P2: Intervention Choice
Drug/Intervention Repurposing

Cell and Gene Therapies
Integration

P3: Intervention Testing
Design of N-of-1 Clinical Trial

Phenotypic Monitoring
Drug Monitoring

P4: DataWarehousing the Results
Merger Into Queryable Database

Available forOther Patients
Open Source

General Drug Development PersonalizedMedicine

Population Benefit Patient Benefit

Fig. 11.2 A representation of the stages in the ‘translation’ of basic insights into clinical useful
products considered in initiatives such as the Clinical and Translational Science Award (CTSA)
initiative overseen by the National Center on Advancing Translational Science of the United States
National Institutes of Health (NCATS; left panel; [5]). An analogous representation of the stages in
the diagnosis and treatment of an individual patient are provided in the right-hand panel
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patients whose comprehensive diagnosis may lay the foundation for crafting a
personalized treatment or intervention plan and exploit data-intensive assays (i.e.,
P0 in the right-hand figure of Fig. 11.2), many AI-based tools can be leveraged. For
example, mining DNA sequence information obtained from an individual in order
to make a genetic diagnosis of a disease can be greatly aided by AI-based analyses
[7]. In addition, facilitating, e.g., cancer diagnoses with AI-based analyses of blood
analytes has been shown to have great potential [11].

If a particular therapeutic target has been identified that is likely to cause the
molecular pathology underlying an individual patient’s disease, then AI-based
strategies can be used to identify potential compounds and drugs that modu-
late that target via high-throughput screening assays. Thus, AI techniques can be
used to analyze drug screening data collected to determine if any of a large number
of extant drugs and compounds have activity against a target and have, in fact, been
shown to be very reliable [12]. In addition, AI-based studies have revealed many
insights into how drugs and compounds may impact various structural and func-
tional features of a cell [13]. Finally, web sites with large databases like DeepChem
(https://deepchem.io/about.html), which leverage AI in the analysis of chemical
structures of pharmacologic compounds and drugs, can be used to identify rele-
vant properties of drugs and compounds for a given target.

An interesting research area of relevance to the identification of pathologies
underlying diseases that might be amenable to pharmacological modulation
involves the design of appropriate studies to tease out those pathologies. For
example, if the relationships between different potential drug targets and their effect
on a molecular system or pathway are not known, researchers may have to sys-
tematically perturb each element in such a system and examine the effect on the
system each of these perturbations [14]. As one can imagine, such studies can be
tedious and laborious. However, recent research suggest that one can use robotics
and AI to conduct such experiments and, in fact, anticipate further experiments that
might be called for based on the results of initial experiments [15]. The actual
deployable experimental infrastructure for pursuing AI-based experiments in this
manner has also been developed, but only for a few select settings [16, 17].

If an extant drug or compound is not found that could appropriately modulate
a relevant target, then creating a novel pharmacotherapeutic (i.e., drug) is necessary
and this often requires insights obtained from materials science in order to make
sure the molecular structure of the drug produced has favorable properties inside the
body. Very recent work suggests that AI can be leveraged to identify materials that
may not be easily identified with traditional brute-force approaches [18, 19]. In
addition, AI has been used to design new chemical and material structures, which
may be relevant to crafting better interventions, whether a drug or mechanical
device, and has also been used to aid in the selection of appropriate chemical
syntheses [20–22]. In fact, AI has been used in studies of very basic phenomena,
such as particle physics, to probe how materials interact [23]. The refinment of
the design of new drugs, for example involving the refinement of the structure of a
therapeutic protein or molecule, could also be greatly facilitated by AI. It has been
shown that in many design contexts in which optimization of materials and the way
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they are put together is of issue, the use of AI can identify superior designs to those
based on legacy strategies [20]. This theme of harnessing AI to identify ways of
optimizing the assembly of materials, or the manner in which an objective function
of whatever sort is optimized given some starting materials and appropriate yet
basic principles for assembling them, was leveraged in the recent description of the
system for playing the age-old game of GO developed by Google’s DeepMind
group [24]. Essentially, the system developed at DeepMind was not only able to
easily beat all human experts as well as other GO-playing systems, but was able to
do this by identifying strategies and moves that were completely beyond those
which humans had used to play and try to master the game for centuries. Thus,
there is the possibility that AI could help identify materials and structures to be
used in constructing drugs and interventions that are beyond those in current drug
and intervention development processes.

As noted previously, if a therapeutic target has been identified, then one could
potentially pursue compound screening studies to identify compounds that modu-
late that target. Such studies often require a knowledge or use of a particular output
or phenotype (e.g., the expression level of a target gene) that reflects what the drug
is to modulate. In the absence of such a phenotype, high-content screens can be
pursued, in which many different phenotypes are evaluated to see if any of the
compounds, often numbering in the thousands or tens of thousands, affect any one
or some subset of these phenotypes as this can be taken as a sign of its activity. AI
techniques have been used to identify potential compounds impacting a target in
high content screening settings [25–27].

Once a therapeutic concept or prototype drug has been defined, relevant and
deployable versions of the drug, or an intervention apparatus, embodying the
concept must be manufactured at scale for distribution. In this light, the manu-
facture of drugs and interventions of all sorts has been greatly facilitated by robotics
and AI [28]. In the context of personalized medicines, it may be that the manu-
facture of drugs and interventions will require nuanced features based on patients’
profiles and therefore have to be designed and crafted in real time as opposed to be
created at scale, stored and distributed when needed—a topic to be discussed in a
later section of this chapter, Sect. 11.8 [29, 30].

11.4 First-in-Human (T1) and Pathology (P1) Studies

Once an intervention or drug had been created, it must be shown to safe
through phase I clinical trials and studies that are often referred to as
‘first-in-human-studies’ (T1 in the left panel of Fig. 11.2). Such studies focus on
the safety of a proposed intervention and are typically pursued on a small number
of individuals in case there are problems with the intervention. To minimize the
risk of exposing individuals to a new intervention that might cause them harm,
insights into the likelihood that individuals with a certain profile will have an
adverse response are required. Studies that consider genetic factors that predispose
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to responses to drugs (good or bad) have revealed many compelling and clinically
useful connections between genetic variants and drug responses. Discovering such
‘pharmacogenetic’ insights has been greatly enhanced through the use of AI tools
applied to very large databases with relevant genetic and drug response information
[31, 32].

The actual design of phase I clinical trials is an ongoing area of research. The
fact that only a few individuals are enrolled in such trials, and a great sensitivity to
the detection of the effects of the proposed drug or intervention are of focus,
suggests that careful monitoring of the subjects enrolled in the trial is required.
Extensions of N-of-1 and aggregated N-of-1 trial designs could be appropriate for
phase I trials [33]. Although discussed in greater detail in the context of vetting the
efficacy of a personalized medicine in Sect. 11.6 below, such studies can leverage
massive amounts of data and AI techniques to identify patterns in a patient’s data
that might be indicative of response to the intervention (see, e.g., Serhani et al.
[34]). Table 11.1 lists examples of studies that have focused on monitoring a single
individual over time to explore how they responded to a particular intervention, or
how their health status may have changed over that time, using various data col-
lection schemes.

In the context of personalized medicine studies, once an individual is found to
possess a certain pathology, a need to identify how that pathology can be corrected
arises (P1 in the right-hand panel of Fig. 11.2). For many common chronic dis-
eases, this is obvious (e.g., for someone diagnosed with high blood pressure,
providing blood pressure lowering medications makes sense). However, nuanced
features of the patient that could effect an intervention response, and the optimal
way to correct the pathology given those nuances, are not often clear. AI-based
strategies similar to those used for making diagnoses can be exploited to identify
potentially correctable pathologies (P0 and P1 in the right panel of Fig. 11.2). For
example, the company Arterys recently announced the first FDA-approved
AI-based application to be used in facilitating clinical diagnoses. The Arterys
system used deep learning applied to a medical imaging platform to help diagnose
heart problems [35]. Other systems have been developed that consider more
comprehensive approaches to understanding a patient’s profiles in a way that could
facilitate the choice of an intervention [36].

To assess and identify pathologies in the first place, biomaterial, usually in the
form of biopsies, is needed from patients, and there is growing sophistication in the
way that biopsied material or patient biosamples can be studied in a laboratory to
identify targets for intervention. For example, emerging induced pluripotent stem
cell (iPSC) and organoid technologies have shown great promise in yielding
insights into patient-specific pathologies that could be overcome with specific
interventions (see Table 2 of Schork and Nazor [6] as well as Rossi et al. [37]).
When recently developed single cell assays are combined with the use of organoids,
even greater resolution concerning pathologies and drug targets can be revealed,
and AI-based analyses have been shown to be effective in this area [38].
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11.5 Late Human (T2) and Intervention Choice (P2)
Studies

If a drug, intervention or health product has been shown to be safe and likely to be
efficacious in early phase trials, then it must be tested for its general utility in the
population at large. AI can be exploited in relevant large-scale population trials that
seek to minimize the deployment and use of inappropriate drugs or interventions for
participants in the trial, as described recently by Yauney and Shah [39]. Of great
interest in this context are the design and conduct of bucket (or variations termed
‘basket’), umbrella, and adaptive trial designs [40]. Although each has unique
features, a simple description of bucket trials can provide the general strategy
behind each of these trial designs and also points out where AI can be exploited.
Essentially bucket trials enroll eligible patients, profile them to identify nuanced

Table 11.1 Single patient-oriented studies leveraging intensive monitoring to identify either
health status changes or the effects of an intervention

Authors Reference Study elements Comments

David et al.
(2014) [93]

PMID:
25146375

Diet and
microbiome

Two individuals fecal microbiome
tracked for a year

Chen et al.
(2012) [94]

PMID:
22424236

Multiomics
profiling

Individual tracked over a year (the
‘Snyderome’ study)

Magnuson et al.
(2016) [95]

PMID:
28781744

Sleep treatment
study

Patient with multiple treatments for
compromised sleep

Zeevi et al.
(2015) [96]

PMID:
26590418

Glycemic
responses to diet

800 people studied to develop
personalized diets

Smarr et al.
(2017) [97]

PMID:
29582916

Colonoscopy
effects

Gut microbiome changes
post colonoscopy

Trammell et al.
(2016) [98]

PMID:
27721479

NAD dose
response

Single individual dosing
study + study of others

Forsdyke (2015) [99] PMID:
26055103

Response to
antihypertensives

Decade of seasonal variation in
response to Losartan

O’Rawe et al.
(2013) [100]

PMID:
24109560

Deep brain
stimulation (DBS)

Two-year study of a man with OCD
treated with DBS

Li et al. (2016) [101] PMID:
27140603

Parkinson’s cell
replacement

Single individual traced for 24 years
post cell transplant

Bloss et al.
(2015) [102]

PMID:
25790160

Idiopathic
neurologic disease

Severely disabled individual treated
for sleep tremors

Piening et al.
(2018) [103]

PMID:
29361466

Multiomics weight
loss study

23 individuals observed over time

Zalusky and Herbert
(1961) [104]

PMID:
14009735

Folate
supplementation

Study of an individual with severe
dietary constraints

Herbert (1962) [105] PMID:
13953904

Folate
supplementation

Study on the researcher himself;
dietary restriction

Golding (2014) [106] PMID:
25332850

Folate
supplementation

Study on the researcher himself;
dietary restriction
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pathophysiologic profiles they possess (e.g., sequencing their tumor DNA in the
context of a cancer clinical trial), and then assign each of them one of possibly
many treatments based on the mechanisms of action of the treatments and their
biologic connections to the patient pathophysiologic profiles (i.e., put each patient
into one of many treatment ‘buckets’). If the patients provided with treatments
dictated by their pathophysiologic profiles (i.e., assigned to the different baskets)
have better outcomes than those provided treatments without recourse to the pro-
filing and treatment matching scheme, then one could infer that the strategy or
‘algorithm’ for matching the treatments to the patients has merit. AI could be of
great use in not only identifying treatment targets in the patient profiles, but also aid
in determining the strategy for matching the treatments to the patient profiles. This
would especially be the case if one could envision the use of many different
treatment buckets (e.g., due to the use of many treatment combinations or com-
plicated temporal treatment schemes).

In the context of choosing an intervention for a particular individual via the
personalized medicine paradigm (P2 in the right panel of Fig. 11.2), if available
drugs and interventions exist, then the choice could be based on simply matching
the patient’s pathophysiologic profile to the mechanisms of action of the drugs,
consistent with the underlying theme governing bucket trials. If the choice is not
obvious, then one could leverage personalized drug screening strategies using
biopsies or biomaterials obtained from the patient, as suggested by Kodack et al. in
the context of cancer [41]. These, and more general, personalized drug screening
strategies have been developed and could benefit from AI techniques to find pat-
terns of relevance in the data that could indicate which drug or intervention is the
most optimal for a given patient [42, 43].

11.6 Implementation (T3) and Clinical Assessment (P3)
Studies

Once a drug, intervention or health product has been shown to benefit individuals
in the general population, then considerations about the routine implementation
and/or use of the product arise (T3 in the left side of Fig. 11.2). Implementation can
come in many forms. For example, if clinical trials focusing on a specific drug
provide sufficient evidence that the drug is safe and efficacious, it can be approved
for use by regulatory agencies such as the FDA and become adopted in clinical
practice. Of greater relevance to AI is the implementation of insights that might
benefit physicians with respect to intervention choices when confronted with
patients with unique profiles (e.g., implementing a treatment strategy of the type
tested in a bucket trial). Implementing such insights requires codifying them and
then providing them to physicians through, e.g., electronic medical record
(EMR) systems typically used to convey patient information to physicians [44].
Implementation of AI-based insights is a major topic of discussion among
pathologists since they are typically responsible for evaluating evidence that a
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patient has particular condition, as well as pointing out nuances associated with that
condition that may require special attention when intervention decisions are made
[45]. The provision of ‘decision support’ information of this type to physicians and
healthcare workers—especially information derived from AI-based analyses—
opens up a number of thorny ethical issues, however, such as who to blame if the
use of the decision support leads to poorer outcomes (i.e., the algorithm and its
developers or the users who may be using it inappropriately) [46].

One important element of the implementation of AI-based decision support tools
in EMR systems is that as new patient data are collected, the prediction models they
are based on can be improved. Thus, ‘Learning Systems’ can be created that
continually evolve and improve based on the accrual of more patient information
and outcomes [47–49]. Sophisticated AI techniques can be used to enhance this
learning, including aggregating data from multiple EMRs or sources [50].

To vet the utility of an intervention for an individual patient (P3 in the right side
of Fig. 11.2), N-of-1 trials can be pursued [33, 51]. AI techniques can be used to
identify patterns in data collected on the patient—say through wireless sensors—
that might be indicative of that patient’s response (or lack thereof) to the inter-
vention [34]. The studies listed in Table 11.1 provide example published N-of-1
studies focusing on an individual’s response to a treatment or an individual
undergoing monitoring for health status changes.

11.7 Post-deployment Evaluation (T4) Studies
and Warehousing (P4)

After the implementation and adoption of a new drug, treatment intervention, or
health product, continuous monitoring of that product must occur in order to
determine if either unanticipated side effects are occurring or the product can be
improved or replaced for various reasons (T4 in the left side of Fig. 11.2). AI-based
learning systems of the type mentioned in the previous section provide an excellent
foundation for such monitoring, and early experiences with such systems bear this
out [52–54]. In addition to the creation of learning systems, there are many ini-
tiatives to aggregate data on patients and patient materials to enable data mining and
AI-based analyses, for example in cancer contexts [55], but also for more general
settings as well [56, 57].

The implementation of AI-based products, such as EMR decision support tools
and learning systems, will also affect doctor/patient relationships in profound ways.
This is especially likely with respect to the justification of intervention choices for
an individual patient [58], but also with respect to predictions concerning future
healthcare needs of that patient where the initiation of interventions might be
appropriate [59]. In this light, large, government-sponsored national initiatives are
being pursued to identify patterns among individuals tracked for healthcare-related
phenomena that might be useful in clinical and public health practices in the future,
such as the UK Biobank initiative in the United Kingdom and the ‘All-of-Us’ study
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in the USA [60, 61]. These studies raise important questions about the ethical, legal,
and social implications of aggregating data on many individuals for the purpose of
benefitting a smaller number of individuals who may need focused care going
forward [61].

11.8 Integration and the Personalized Medicine Workflow

The P0–P4 personalized medicine translational workflow has many common
elements with the T0–T4 drug and health product development workflow
(Fig. 11.2) as noted. One important common element is that the transitions from
each stage of the workflow need to be seemless and efficient. This can be difficult
since the expertise and technologies needed at each stage are very different, often
leading to their independent pursuit. However, emerging strategies and concepts in
the way personalized medicine is practiced, coupled with the use of AI techniques,
could lead to more holistic and efficient ways of treating individual patients that run
through the entire P0–P4 workflow [6].

Thus, the ideal setting for personalized medicine and health care is one in which
the diagnoses, treatment, and follow-up monitoring of individual patients are
streamlined into a single process with very smooth and coordinated transitions from
one relevant activity or sub-process to another. A good paradigm for this involves
the creation of cell replacement therapies for a wide variety of conditions [62, 63].
For example, in certain immunotherapeutic-oriented cell replacement therapies for
cancer, a patient’s tumor is profiled for the existence of unique ‘neo-antigens’ or
mutations that might attract the host’s own immune system to attack the cells
harboring those mutations. If such neo-antigens are found, then cells from either a
donor (allogeneic transplantation) or from the patient him or herself (autologous
transplantation) are harvested and sensitized to recognize the neo-antigens. The
basic idea is that these modified cells will attract the host’s immune cells to the
tumor cells harboring the neo-antigens when introduced into the patient’s body
[62, 63]. Since the creation and manufacture of the cells cannot be pursued in
advance of knowing what neo-antigens are present in the patient’s tumor, they must
be created in near real time. The production of treatments for patients in real time
based on the patient’s unique and immediate needs is termed the ‘magistral’ pro-
duction of treatments, as opposed to the traditional or ‘officinal’ production of
treatments [29, 30]. Magistral production of treatments such as drugs is likely to be
a reality for personalized medicine in many settings, even beyond cancer, since it
would be too difficult to anticipate all the treatments (e.g., cells sensitive to every
neo-antigen profile) and stockpile them for use in the future, as is assumed in the
case with the officinal production of treatments.

To advance and generalize this concept of the magistral production of person-
alized medicine treatments, one could imagine leveraging AI-powered robotics
technologies to enable the efficient and precise manufacture of relevant treatments
[64]. 3D printing of treatments also has the potential to facilitate the realtime
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production of treatments, as the first US FDA-approval for a 3D printed drug was
made in 2015 [65]. One could also envision the immediate conduct of N-of-1 trials
involving AI-based pattern discovery with sophisticated treatment outcome moni-
toring devices after a treatment has been crafted to assess its impact on the patient
[33, 51, 66]. Further, one could potentially exploit AI-based simulation studies to
anticipate directions that a treatment strategy might take [67].

11.9 Limitations of AI in Advancing Personalized
Medicine

There are many limitations to the use of AI in the development of personalized
medicines. We briefly discuss some of the more salient issues below. First, there is
an argument that many big data analyses that combine information on many
individuals to identify patterns that reflect population-level relationships between
data points do not get at important individual-level relationships [68]. This potential
lack of ‘ergodicity’ could result in models that are not useful for making individual
treatment decisions. It has been shown that, in terms of identifying trends in a target
individual’s health data that could indicate a health status change for that target
individual based on data collected on a large number of individuals, as more data
points are collected on each individual, any predictions of the target individual’s
heath trajectory will rely (in a statistical sense) more on the legacy data points on
that target individual and less on the population-level data [69]. Sensitizing AI
techniques to this fact is crucial for advancing personalized medicine.

Second, there is a need to vet or test the utility of healthcare products rooted in
AI. This is motivated by the inconsistent results observed with the use of some AI
or big data-based healthcare products, such as IBM’s Watson treatment decision
support system [70, 71]. Testing such systems via traditional randomized clinical
trials has been discussed in the literature, and some AI-based decision support tools
have in fact been shown evidence for efficacy in bona fide clinical trials [72].
A potential need for vetting AI-based decision support products, like IBM’s Wat-
son, is that if the underlying system’s decision making capability is trained on an
incomplete or biased data set, then the recommendations or predictions it provides
are likely to be unreliable. A rather infamous case of this involves Google’s system
for predicting flu outbreaks [73]. In addition, in the context of bucket trials, in
which the underlying scheme for matching drugs to patient profiles is being tested,
if the scheme is shown not work better than standard of care or an alternative way
of matching drugs to patient profiles, then a couple of questions could be raised. It
could be that the drugs are ineffective, or some subset are ineffective, essentially
negatively impacting the overall performance of the matching scheme. Alterna-
tively, it could be that the drugs work, but simply are not matched properly to the
patient profiles; i.e., the matching algorithm or scheme is simply wrong. These
questions were raised in the context of the SHIVA trial—a bucket trail in which the
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drug matching scheme was shown not to benefit the patients any more than legacy
ways of treating patients [74].

Third, it may be that the best way to vet at least decision support tools, is not to
test them in randomized clinical trials, but rather to implement them in learning
systems in which the decision support rules or algorithms are continuously updated
[66, 75–78]. However, learning systems of this sort require a lack of bias in the
initial data sets used to seed the system in order to ensure generalizable results. In
addition, it could take a long time for the system to evolve into a one with
an accurate and reliable decision scheme.

Fourth, many AI-based decision support products leverage deep learning and
neural network-based algorithms. Such algorithms can produce very reliable pre-
dictions if a large enough training set is used, but the connections between the
inputs (i.e., data) and the outputs (i.e., predictions) can be very hard to understand.
Thus, the ‘Black Box’ problem associated with many AI-based tools can be
problematic and lead to a lack of confidence or sense of trepidation about relying on
the predictions in the real world where real lives are at stake [79]. In addition, not
all AI techniques are designed to identify causal relationships between various
inputs and outputs, but rather mere associations or predictions (i.e., they focus on
correlation and not causation) [80]. This may suffice if the goal is to develop
accurate predictions, but if the goal is to, e.g., identify a drug target that, when
modulated, leads to a desired effect, then identifying causal relationships is crucial.

11.10 Future Directions and Concluding Remarks

The future contributions of AI in advancing personalized medicine are likely to be
very pronounced, as this chapter makes clear. Not only will there be greater
adoption of AI-based health products in the near term, but such products could be
developed and exploit emerging and more long term computing capabilities such as
quantum computing [81, 82] to achieve increased speed and an ability to handle
larger and larger data sets. These larger data sets are likely to derive from better and
more sophisticated monitoring health devices which can be used to gather data to
seed and key off for the development of more reliable predictions [83].

In addition to exploiting greater speed and computational efficiency, AI-based
health products and tools will likely incorporate greater understanding of biology in
the future. For example, the discovery of simple input/output relationships among
data points that has been focus of a great deal of AI, machine learning and statistical
analysis research, could be pursued with constraints that are known to govern
phenomena of relevance (e.g., known biophysical constraints involving the pro-
duction of metabolites in a biochemical pathway, first principles having to do with
Watson-Crick base pairing, etc.), leading to more biologically compelling models
[84, 85].
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Finally, as a closing note, much of the use of AI in the development of
personalized medicines has focused on the treatment of individuals with overt
disease: identifying the underlying pathology, determining which interventions
might make most sense to provide given what is known about that pathology and
the mechanisms of action of interventions, and testing to see if a chosen inter-
vention works. Thus, the vast majority of AI-based products and tools used in
advancing personalized medicine focus on the diagnosis, prognosis, and treatment
of individuals. This makes sense as there is a great need for advances and efficiency
gains in treating patients given the costs of current treatments, especially in the
context of cancer. However, the application of AI to disease prevention is gaining a
great deal of attention and traction. For example, AI and machine learning tech-
niques have been shown to be useful in the development of ‘polygenic risk scores’
that can be used to identify individuals with an elevated genetic risk for disease
who could be monitored more closely [86–88]. In addition, by combining insights
into genetic predisposition to disease with continuous monitoring to identify early
signs of disease, one could potentially stop diseases in their tracks before com-
plicated treatments are needed [89, 90]. Such monitoring could be greatly enhanced
by applying AI techniques to the data collected by novel sensors provided to
patients [91, 92].

Ultimately, enthusiasm for leveraging AI techniques is not likely to slow down
any time soon. AI is likely to impact virtually every industry, from manufacturing,
to sales and marketing, to banking, to transportation. In fact, many of these
industries have already experienced changes with the introduction of AI. The
healthcare industry is no less likely to benefit from AI, as this chapter has made
clear, as long as appropriate integration and vetting occurs.
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